
## Steven T Olson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5307411/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Commentary on "The polymerization of proteins: The action of thrombin on fibrinogen― Archives of<br>Biochemistry and Biophysics, 2022, , 109176.                                                                                                               | 1.4 | 0         |
| 2  | Heparin activation of protein Z-dependent protease inhibitor (ZPI) allosterically blocks protein Z<br>activation through an extended heparin-binding site. Journal of Biological Chemistry, 2022, 298,<br>102022.                                              | 1.6 | 3         |
| 3  | Paramount Importance of Core Conformational Changes for Heparin Allosteric Activation of Antithrombin. Biochemistry, 2021, 60, 1201-1213.                                                                                                                      | 1.2 | 5         |
| 4  | <p>An in vitro Model System for Evaluating Remote Magnetic Nanoparticle Movement and<br/>Fibrinolysis</p> . International Journal of Nanomedicine, 2020, Volume 15, 1549-1568.                                                                                 | 3.3 | 11        |
| 5  | Cooperative Interactions of Three Hotspot Heparin Binding Residues Are Critical for Allosteric Activation of Antithrombin by Heparin. Biochemistry, 2018, 57, 2211-2226.                                                                                       | 1.2 | 7         |
| 6  | Lipid oxidation inactivates the anticoagulant function of protein Z-dependent protease inhibitor (ZPI).<br>Journal of Biological Chemistry, 2017, 292, 14625-14635.                                                                                            | 1.6 | 9         |
| 7  | Disease-causing mutations in the serpin antithrombin reveal a key domain critical for inhibiting protease activities. Journal of Biological Chemistry, 2017, 292, 16513-16520.                                                                                 | 1.6 | 15        |
| 8  | Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance.<br>Biochemical Journal, 2016, 473, 2273-2293.                                                                                                                   | 1.7 | 72        |
| 9  | Thermodynamic and Kinetic Characterization of the Protein Z-dependent Protease Inhibitor<br>(ZPI)-Protein Z Interaction Reveals an Unexpected Role for ZPI Lys-239. Journal of Biological Chemistry,<br>2015, 290, 9906-9918.                                  | 1.6 | 8         |
| 10 | Saturation Mutagenesis of the Antithrombin Reactive Center Loop P14 Residue Supports a Three-step<br>Mechanism of Heparin Allosteric Activation Involving Intermediate and Fully Activated States. Journal<br>of Biological Chemistry, 2015, 290, 28020-28036. | 1.6 | 8         |
| 11 | Structural characterization of new deoxycytidine kinase inhibitors rationalizes the<br>affinity-determining moieties of the molecules. Acta Crystallographica Section D: Biological<br>Crystallography, 2014, 70, 68-78.                                       | 2.5 | 7         |
| 12 | Conformational Activation of Antithrombin by Heparin Involves an Altered Exosite Interaction with<br>Protease. Journal of Biological Chemistry, 2014, 289, 34049-34064.                                                                                        | 1.6 | 25        |
| 13 | Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function. Blood, 2014, 124, 142-150.                                                                                 | 0.6 | 52        |
| 14 | The Allosteric Mechanism of Activation of Antithrombin as an Inhibitor of Factor IXa and Factor Xa.<br>Journal of Biological Chemistry, 2013, 288, 33611-33619.                                                                                                | 1.6 | 14        |
| 15 | Kinetic Intermediates en Route to the Final Serpin-Protease Complex. Journal of Biological Chemistry, 2013, 288, 32020-32035.                                                                                                                                  | 1.6 | 14        |
| 16 | Specificity and selectivity profile of EP217609: a new neutralizable dual-action anticoagulant that targets thrombin and factor Xa. Blood, 2012, 119, 2187-2195.                                                                                               | 0.6 | 26        |
| 17 | Structural basis for catalytic activation of protein Z–dependent protease inhibitor (ZPI) by protein Z.<br>Blood, 2012, 120, 1726-1733.                                                                                                                        | 0.6 | 19        |
| 18 | Characterization of the Heparin-Binding Site of the Protein Z-Dependent Protease Inhibitor.<br>Biochemistry, 2012, 51, 4078-4085.                                                                                                                              | 1.2 | 18        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Heparin Is a Major Activator of the Anticoagulant Serpin, Protein Z-dependent Protease Inhibitor.<br>Journal of Biological Chemistry, 2011, 286, 8740-8751.                                                                                                    | 1.6 | 41        |
| 20 | Regulation of Proteases by Protein Inhibitors of the Serpin Superfamily. Progress in Molecular<br>Biology and Translational Science, 2011, 99, 185-240.                                                                                                        | 0.9 | 54        |
| 21 | Matriptase is inhibited by extravascular antithrombin in epithelial cells but not in most carcinoma<br>cells. American Journal of Physiology - Cell Physiology, 2011, 301, C1093-C1103.                                                                        | 2.1 | 8         |
| 22 | Basis for the Specificity and Activation of the Serpin Protein Z-dependent Proteinase Inhibitor (ZPI) as<br>an Inhibitor of Membrane-associated Factor Xa. Journal of Biological Chemistry, 2010, 285,<br>20399-20409.                                         | 1.6 | 42        |
| 23 | Molecular mechanisms of antithrombin–heparin regulation of blood clotting proteinases. A paradigm<br>for understanding proteinase regulation by serpin family protein proteinase inhibitors. Biochimie,<br>2010, 92, 1587-1596.                                | 1.3 | 129       |
| 24 | Kinetic evidence that allosteric activation of antithrombin by heparin is mediated by two sequential conformational changes. Archives of Biochemistry and Biophysics, 2010, 504, 169-176.                                                                      | 1.4 | 20        |
| 25 | The Signature 3-O-Sulfo Group of the Anticoagulant Heparin Sequence Is Critical for Heparin Binding to Antithrombin but Is Not Required for Allosteric Activation. Journal of Biological Chemistry, 2009, 284, 27054-27064.                                    | 1.6 | 34        |
| 26 | Exosite Determinants of Serpin Specificity. Journal of Biological Chemistry, 2009, 284, 20441-20445.                                                                                                                                                           | 1.6 | 73        |
| 27 | Engineering Functional Antithrombin Exosites in α1-Proteinase Inhibitor That Specifically Promote the<br>Inhibition of Factor Xa and Factor IXa. Journal of Biological Chemistry, 2009, 284, 1550-1558.                                                        | 1.6 | 16        |
| 28 | Activation of antithrombin as a factor IXa and Xa inhibitor involves mitigation of repression rather than positive enhancement. FEBS Letters, 2009, 583, 3397-3400.                                                                                            | 1.3 | 13        |
| 29 | Antiangiogenic Forms of Antithrombin Specifically Bind to the Anticoagulant Heparin Sequence.<br>Biochemistry, 2008, 47, 13610-13619.                                                                                                                          | 1.2 | 36        |
| 30 | Kinetic Characterization of the Protein Z-dependent Protease Inhibitor Reaction with Blood<br>Coagulation Factor Xa. Journal of Biological Chemistry, 2008, 283, 29770-29783.                                                                                  | 1.6 | 41        |
| 31 | Characterization of the Conformational Alterations, Reduced Anticoagulant Activity, and Enhanced<br>Antiangiogenic Activity of Prelatent Antithrombin. Journal of Biological Chemistry, 2008, 283,<br>14417-14429.                                             | 1.6 | 14        |
| 32 | Serine and Cysteine Proteases Are Translocated to Similar Extents upon Formation of Covalent<br>Complexes with Serpins. Journal of Biological Chemistry, 2007, 282, 2305-2313.                                                                                 | 1.6 | 24        |
| 33 | Mechanism by Which Exosites Promote the Inhibition of Blood Coagulation Proteases by<br>Heparin-activated Antithrombin. Journal of Biological Chemistry, 2007, 282, 33609-33622.                                                                               | 1.6 | 28        |
| 34 | Cytokine Response Modifier A Inhibition of Initiator Caspases Results in Covalent Complex Formation and Dissociation of the Caspase Tetramer. Journal of Biological Chemistry, 2006, 281, 38781-38790.                                                         | 1.6 | 26        |
| 35 | Residues Tyr253 and Glu255 in Strand 3 of β-Sheet C of Antithrombin Are Key Determinants of an Exosite<br>Made Accessible by Heparin Activation to Promote Rapid Inhibition of Factors Xa and IXa. Journal of<br>Biological Chemistry, 2006, 281, 13424-13432. | 1.6 | 37        |
| 36 | Importance of Tryptophan 49 of Antithrombin in Heparin Binding and Conformational Activation.<br>Biochemistry, 2005, 44, 11660-11668.                                                                                                                          | 1.2 | 19        |

| #  | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Specificity and reactive loop length requirements for crmA inhibition of serine proteases. Protein Science, 2005, 14, 533-542.                                                                                                                                                      | 3.1 | 20        |
| 38 | Roles of N-Terminal Region Residues Lys11, Arg13, and Arg24 of Antithrombin in Heparin Recognition<br>and in Promotion and Stabilization of the Heparin-Induced Conformational Changeâ€. Biochemistry,<br>2004, 43, 675-683.                                                        | 1.2 | 24        |
| 39 | Accelerating ability of synthetic oligosaccharides on antithrombin inhibition of proteinases of the clotting and fibrinolytic systems Comparison with heparin and low-molecular-weight heparin. Thrombosis and Haemostasis, 2004, 92, 929-939.                                      | 1.8 | 121       |
| 40 | Serpin–ligand interactions. Methods, 2004, 32, 93-109.                                                                                                                                                                                                                              | 1.9 | 21        |
| 41 | Antiangiogenic antithrombin down-regulates the expression of the proangiogenic heparan sulfate proteoglycan, perlecan, in endothelial cells. Blood, 2004, 103, 1185-1191.                                                                                                           | 0.6 | 55        |
| 42 | Effect of Native and Cleaved Forms of Antithrombin on Nuclear Factor κB Activation in Endothelial<br>Cells Blood, 2004, 104, 3923-3923.                                                                                                                                             | 0.6 | 0         |
| 43 | Contribution of Basic Residues of the Autolysis Loop to the Substrate and Inhibitor Specificity of<br>Factor IXa. Journal of Biological Chemistry, 2003, 278, 25032-25038.                                                                                                          | 1.6 | 31        |
| 44 | Deletion of P1 Arginine in a Novel Antithrombin Variant (Antithrombin London) Abolishes Inhibitory<br>Activity but Enhances Heparin Affinity and Is Associated with Early Onset Thrombosis. Journal of<br>Biological Chemistry, 2003, 278, 13688-13695.                             | 1.6 | 30        |
| 45 | Localization of an Antithrombin Exosite That Promotes Rapid Inhibition of Factors Xa and IXa<br>Dependent on Heparin Activation of the Serpin. Journal of Biological Chemistry, 2003, 278, 51433-51440.                                                                             | 1.6 | 40        |
| 46 | Heparin and Calcium Ions Dramatically Enhance Antithrombin Reactivity with Factor IXa by Generating New Interaction Exosites. Biochemistry, 2003, 42, 8143-8152.                                                                                                                    | 1.2 | 67        |
| 47 | Antithrombin III Phenylalanines 122 and 121 Contribute to Its High Affinity for Heparin and Its Conformational Activation. Journal of Biological Chemistry, 2003, 278, 15941-15950.                                                                                                 | 1.6 | 52        |
| 48 | Importance of Lysine 125 for Heparin Binding and Activation of Antithrombin. Biochemistry, 2002, 41, 4779-4788.                                                                                                                                                                     | 1.2 | 44        |
| 49 | Identification of Critical Molecular Interactions Mediating Heparin Activation of Antithrombin<br>Implications for the Design of Improved Heparin Anticoagulants. Trends in Cardiovascular Medicine,<br>2002, 12, 198-205.                                                          | 2.3 | 58        |
| 50 | Heparin Activates Antithrombin Anticoagulant Function by Generating New Interaction Sites<br>(Exosites) for Blood Clotting Proteinases. Trends in Cardiovascular Medicine, 2002, 12, 331-338.                                                                                       | 2.3 | 95        |
| 51 | Resolution of Michaelis Complex, Acylation, and Conformational Change Steps in the Reactions of the Serpin, Plasminogen Activator Inhibitor-1, with Tissue Plasminogen Activator and Trypsinâ€.<br>Biochemistry, 2001, 40, 11742-11756.                                             | 1.2 | 95        |
| 52 | The Antithrombin P1 Residue Is Important for Target Proteinase Specificity but Not for Heparin<br>Activation of the Serpin. Characterization of P1 Antithrombin Variants with Altered Proteinase<br>Specificity but Normal Heparin Activationâ€. Biochemistry, 2001, 40, 6670-6679. | 1.2 | 52        |
| 53 | Heparin Enhances the Specificity of Antithrombin for Thrombin and Factor Xa Independent of the Reactive Center Loop Sequence. Journal of Biological Chemistry, 2001, 276, 14961-14971.                                                                                              | 1.6 | 128       |
| 54 | Lysine 114 of Antithrombin Is of Crucial Importance for the Affinity and Kinetics of Heparin<br>Pentasaccharide Binding. Journal of Biological Chemistry, 2001, 276, 43809-43817.                                                                                                   | 1.6 | 54        |

| #          | Article                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55         | The pH Dependence of Serpin-Proteinase Complex Dissociation Reveals a Mechanism of Complex<br>Stabilization Involving Inactive and Active Conformational States of the Proteinase Which Are<br>Perturbable by Calcium. Journal of Biological Chemistry, 2001, 276, 32446-32455.                           | 1.6 | 51        |
| 56         | The Nâ€ŧerminal region of cystatin A (stefin A) binds to papain subsequent to the two hairpin loops of<br>the inhibitor. Demonstration of twoâ€step binding by rapidâ€kinetic studies of cystatin A labeled at the<br>Nâ€ŧerminus with a fluorescent reporter group. Protein Science, 2000, 9, 2218-2224. | 3.1 | 13        |
| 5 <b>7</b> | Critical Role of the Linker Region between Helix D and Strand 2A in Heparin Activation of<br>Antithrombin. Journal of Biological Chemistry, 2000, 275, 2698-2704.                                                                                                                                         | 1.6 | 44        |
| 58         | Partitioning of Serpin-Proteinase Reactions between Stable Inhibition and Substrate Cleavage Is<br>Regulated by the Rate of Serpin Reactive Center Loop Insertion into β-Sheet A. Journal of Biological<br>Chemistry, 2000, 275, 5839-5844.                                                               | 1.6 | 94        |
| 59         | Role of Arginine 129 in Heparin Binding and Activation of Antithrombin. Journal of Biological<br>Chemistry, 2000, 275, 18976-18984.                                                                                                                                                                       | 1.6 | 42        |
| 60         | The Region of Antithrombin Interacting with Full-Length Heparin Chains Outside the High-Affinity<br>Pentasaccharide Sequence Extends to Lys136 but Not to Lys139â€. Biochemistry, 2000, 39, 8512-8518.                                                                                                    | 1.2 | 38        |
| 61         | Importance of the P2 Glycine of Antithrombin in Target Proteinase Specificity, Heparin Activation, and the Efficiency of Proteinase Trapping as Revealed by a P2 Gly → Pro Mutation. Journal of Biological Chemistry, 1999, 274, 28142-28149.                                                             | 1.6 | 22        |
| 62         | The Role of Arg46 and Arg47 of Antithrombin in Heparin Bindingâ€. Biochemistry, 1999, 38, 10196-10204.                                                                                                                                                                                                    | 1.2 | 52        |
| 63         | Mechanism of Heparin Activation of Antithrombin:Â Evidence for an Induced-Fit Model of Allosteric<br>Activation Involving Two Interaction Subsitesâ€. Biochemistry, 1998, 37, 13033-13041.                                                                                                                | 1.2 | 73        |
| 64         | Change in Environment of the P1 Side Chain upon Progression from the Michaelis Complex to the<br>Covalent Serpinâ^'Proteinase Complexâ€. Biochemistry, 1998, 37, 13110-13119.                                                                                                                             | 1.2 | 25        |
| 65         | Deconvolution of the Fluorescence Emission Spectrum of Human Antithrombin and Identification of<br>the Tryptophan Residues That Are Responsive to Heparin Binding. Journal of Biological Chemistry, 1998,<br>273, 23283-23289.                                                                            | 1.6 | 52        |
| 66         | Mechanism of Heparin Activation of Antithrombin. Journal of Biological Chemistry, 1998, 273, 7478-7487.                                                                                                                                                                                                   | 1.6 | 167       |
| 67         | Inactivation of papain by antithrombin due to autolytic digestion: a model of serpin inactivation of cysteine proteinases. Biochemical Journal, 1998, 335, 701-709.                                                                                                                                       | 1.7 | 21        |
| 68         | Inactivation of Thrombin by Antithrombin Is Accompanied by Inactivation of Regulatory Exosite I.<br>Journal of Biological Chemistry, 1997, 272, 19837-19845.                                                                                                                                              | 1.6 | 63        |
| 69         | The Oligosaccharide Side Chain on Asn-135 of α-Antithrombin, Absent in β-Antithrombin, Decreases the<br>Heparin Affinity of the Inhibitor by Affecting the Heparin-Induced Conformational Change.<br>Biochemistry, 1997, 36, 6682-6691.                                                                   | 1.2 | 110       |
| 70         | Antithrombin. Advances in Experimental Medicine and Biology, 1997, , 17-33.                                                                                                                                                                                                                               | 0.8 | 51        |
| 71         | Mechanism of Heparin Activation of Antithrombin. Evidence for Reactive Center Loop Preinsertion with Expulsion upon Heparin Binding. Biochemistry, 1996, 35, 8495-8503.                                                                                                                                   | 1.2 | 134       |
| 72         | Role of the Catalytic Serine in the Interactions of Serine Proteinases with Protein Inhibitors of the Serpin Family. Journal of Biological Chemistry, 1995, 270, 30007-30017.                                                                                                                             | 1.6 | 76        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mechanism of action of heparin and heparin-like antithrombotics. Journal of Computer - Aided<br>Molecular Design, 1994, 1, 479-501.                                                           | 1.0 | 17        |
| 74 | Transmission of conformational change from the heparin binding site to the reactive center of antithrombin. Biochemistry, 1993, 32, 8385-8389.                                                | 1.2 | 75        |
| 75 | Immunologic evidence for insertion of the reactive-bond loop of antithrombin into the A .betasheet of the inhibitor during trapping of target proteinases. Biochemistry, 1993, 32, 6501-6505. | 1.2 | 72        |
| 76 | [30] Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin. Methods in Enzymology, 1993, 222, 525-559.                    | 0.4 | 233       |