Richard Anney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5307244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 2013, 45, 984-994.	9.4	2,067
2	Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 2010, 466, 368-372.	13.7	1,803
3	Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 2019, 51, 431-444.	9.4	1,538
4	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	6.0	1,085
5	Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders. American Journal of Human Genetics, 2014, 94, 677-694.	2.6	819
6	A genome-wide scan for common alleles affecting risk for autism. Human Molecular Genetics, 2010, 19, 4072-4082.	1.4	538
7	Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nature Genetics, 2017, 49, 978-985.	9.4	401
8	Individual common variants exert weak effects on the risk for autism spectrum disorders. Human Molecular Genetics, 2012, 21, 4781-4792.	1.4	334
9	Emotional lability in children and adolescents with attention deficit/hyperactivity disorder (ADHD): clinical correlates and familial prevalence. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2010, 51, 915-923.	3.1	279
10	Genome-Wide Analysis of Copy Number Variants in Attention Deficit Hyperactivity Disorder: The Role of Rare Variants and Duplications at 15q13.3. American Journal of Psychiatry, 2012, 169, 195-204.	4.0	242
11	Genomeâ€wide association scan of attention deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1337-1344.	1.1	228
12	Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. American Journal of Human Genetics, 2015, 96, 283-294.	2.6	225
13	Autism symptoms in Attention-Deficit/Hyperactivity Disorder: A Familial trait which Correlates with Conduct, Oppositional Defiant, Language and Motor Disorders. Journal of Autism and Developmental Disorders, 2009, 39, 197-209.	1.7	189
14	A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Human Genetics, 2012, 131, 565-579.	1.8	180
15	Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Molecular Psychiatry, 2014, 19, 872-879.	4.1	160
16	High Loading of Polygenic Risk for ADHD in Children With Comorbid Aggression. American Journal of Psychiatry, 2013, 170, 909-916.	4.0	127
17	Prospects for epigenetic research within cohort studies of psychological disorder: A pilot investigation of a peripheral cell marker of epigenetic risk for depression. Biological Psychology, 2010, 83, 159-165.	1.1	125
18	Dopamine and serotonin transporter genotypes moderate sensitivity to maternal expressed emotion: the case of conduct and emotional problems in attention deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2009, 50, 1052-1063.	3.1	114

RICHARD ANNEY

#	Article	IF	CITATIONS
19	Characterizing Developmental Trajectories and the Role of Neuropsychiatric Genetic Risk Variants in Early-Onset Depression. JAMA Psychiatry, 2019, 76, 306.	6.0	111
20	Development of Strategies for SNP Detection in RNA-Seq Data: Application to Lymphoblastoid Cell Lines and Evaluation Using 1000 Genomes Data. PLoS ONE, 2013, 8, e58815.	1.1	108
21	ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties. Molecular Psychiatry, 2018, 23, 263-270.	4.1	107
22	Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in ADHD and autism. Translational Psychiatry, 2017, 7, e999-e999.	2.4	99
23	Association between the COMT Val158Met polymorphism and propensity to anxiety in an Australian population-based longitudinal study of adolescent health. Psychiatric Genetics, 2005, 15, 109-115.	0.6	92
24	Oxytocin receptor (OXTR) does not play a major role in the aetiology of autism: Genetic and molecular studies. Neuroscience Letters, 2010, 474, 163-167.	1.0	90
25	Does parental expressed emotion moderate genetic effects in ADHD? an exploration using a genome wide association scan. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1359-1368.	1.1	78
26	Spinocerebellar ataxia type 15 (sca15) maps to 3p24.2-3pter:. Neurobiology of Disease, 2003, 13, 147-157.	2.1	70
27	Association between 5-HTTLPR genotypes and persisting patterns of anxiety and alcohol use: results from a 10-year longitudinal study of adolescent mental health. Molecular Psychiatry, 2005, 10, 868-876.	4.1	68
28	Novel Insight Into the Etiology of Autism Spectrum Disorder Gained by Integrating Expression Data With Genome-wide Association Statistics. Biological Psychiatry, 2019, 86, 265-273.	0.7	65
29	The Social Communication Questionnaire in a sample of the general population of school-going children. Irish Journal of Medical Science, 2009, 178, 193-199.	0.8	48
30	What explains the link between childhood ADHD and adolescent depression? Investigating the role of peer relationships and academic attainment. European Child and Adolescent Psychiatry, 2020, 29, 1581-1591.	2.8	48
31	COMT Val158Met and 5HTTLPR functional loci interact to predict persistence of anxiety across adolescence: results from the Victorian Adolescent Health Cohort Study. Genes, Brain and Behavior, 2007, 6, 647-652.	1.1	44
32	Association between dopamine D3 receptor gene polymorphisms and schizophrenia in an isolate population. Schizophrenia Research, 2005, 73, 49-54.	1.1	42
33	Linkage to Chromosome 1p36 for Attention-Deficit/Hyperactivity Disorder Traits in School and Home Settings. Biological Psychiatry, 2008, 64, 571-576.	0.7	41
34	A Functional Variant of the Serotonin Transporter Gene (SLC6A4) Moderates Impulsive Choice in Attention-Deficit/Hyperactivity Disorder Boys and Siblings. Biological Psychiatry, 2011, 70, 230-236.	0.7	40
35	Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders. European Journal of Human Genetics, 2011, 19, 1082-1089.	1.4	39
36	Home environment: association with hyperactivity/impulsivity in children with ADHD and their nonâ€ADHD siblings. Child: Care, Health and Development, 2013, 39, 202-212.	0.8	38

RICHARD ANNEY

#	Article	IF	CITATIONS
37	A genome-wide investigation into parent-of-origin effects in autism spectrum disorder identifies previously associated genes including SHANK3. European Journal of Human Genetics, 2017, 25, 234-239.	1.4	37
38	Using Genetics to Examine a General Liability to Childhood Psychopathology. Behavior Genetics, 2020, 50, 213-220.	1.4	36
39	The dopamine receptor D4 7â€repeat allele and prenatal smoking in ADHDâ€affected children and their unaffected siblings: no gene–environment interaction. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2008, 49, 1053-1060.	3.1	34
40	The phenotypic manifestations of rare genic CNVs in autism spectrum disorder. Molecular Psychiatry, 2015, 20, 1366-1372.	4.1	34
41	MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls. Translational Psychiatry, 2017, 7, e1012-e1012.	2.4	34
42	CNVs leading to fusion transcripts in individuals with autism spectrum disorder. European Journal of Human Genetics, 2012, 20, 1141-1147.	1.4	33
43	Evidence for <i>cis</i> â€acting regulation of ANK3 and CACNA1C gene expression. Bipolar Disorders, 2010, 12, 440-445.	1.1	31
44	Autism spectrum disorder diagnosis in adults: phenotype and genotype findings from a clinically derived cohort. British Journal of Psychiatry, 2019, 215, 647-653.	1.7	31
45	On Genome-wide Association Studies for Family-Based Designs: An Integrative Analysis Approach Combining Ascertained Family Samples with Unselected Controls. American Journal of Human Genetics, 2010, 86, 573-580.	2.6	30
46	Variability in Working Memory Performance Explained by Epistasis vs Polygenic Scores in the <i>ZNF804A</i> Pathway. JAMA Psychiatry, 2014, 71, 778.	6.0	28
47	Association Between Dependent Smoking and a Polymorphism in the Tyrosine Hydroxylase Gene in a Prospective Population-Based Study of Adolescent Health. Behavior Genetics, 2004, 34, 85-91.	1.4	27
48	Common polygenic variation in coeliac disease and confirmation of ZNF335 and NIFA as disease susceptibility loci. European Journal of Human Genetics, 2016, 24, 291-297.	1.4	25
49	Functional analysis of intron 8 and 3′ UTR variable number of tandem repeats of SLC6A3: differential activity of intron 8 variants. Pharmacogenomics Journal, 2010, 10, 442-447.	0.9	23
50	Cis-effects on gene expression in the human prenatal brain associated with genetic risk for neuropsychiatric disorders. Molecular Psychiatry, 2021, 26, 2082-2088.	4.1	23
51	The <i>ATXN1</i> and <i>TRIM31</i> genes are related to intelligence in an ADHD background: Evidence from a large collaborative study totaling 4,963 Subjects. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 145-157.	1.1	21
52	The phenotypic manifestations of rare CNVs in schizophrenia. Schizophrenia Research, 2014, 158, 255-260.	1.1	21
53	The one and the many: effects of the cell adhesion molecule pathway on neuropsychological function in psychosis. Psychological Medicine, 2014, 44, 2177-2187.	2.7	18
54	Evidence of Assortative Mating in Autism Spectrum Disorder. Biological Psychiatry, 2019, 86, 286-293.	0.7	18

RICHARD ANNEY

#	Article	IF	CITATIONS
55	Intelligence in DSM-IV combined type attention-deficit/hyperactivity disorder is not predicted by either dopamine receptor/transporter genes or other previously identified risk alleles for attention-deficit/hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 316-319.	1.1	17
56	Regulation of <i>SPRY3</i> by X chromosome and PAR2-linked promoters in an autism susceptibility region. Human Molecular Genetics, 2015, 24, 5126-5141.	1.4	16
57	Motivation and Cognitive Abilities as Mediators Between Polygenic Scores and Psychopathology in Children. Journal of the American Academy of Child and Adolescent Psychiatry, 2022, 61, 782-795.e3.	0.3	14
58	Effects of Thyroid Status on Regional Brain Volumes: A Diagnostic and Genetic Imaging Study in UK Biobank. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 688-696.	1.8	11
59	Effects of MiRâ€137 genetic risk score on brain volume and cortical measures in patients with schizophrenia and controls. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 369-376.	1.1	10
60	Lack of association between markers in the ITGA3, ITGAV, ITGA6 and ITGB3 and autism in an Irish sample. Autism Research, 2010, 3, 342-344.	2.1	6
61	Sleep disturbances in ADHD: investigating the contribution of polygenic liability for ADHD and sleep-related phenotypes. European Child and Adolescent Psychiatry, 2022, , 1.	2.8	4
62	Conservation of CNS1 and exclusion of its role in atopic eczema susceptibility. Journal of Allergy and Clinical Immunology, 2002, 109, 176-178.	1.5	3
63	Allelic expression imbalance of the schizophrenia susceptibility gene CHI3L1. Psychiatric Genetics, 2011, 21, 281-286.	0.6	2
64	The role of rare compound heterozygous events in autism spectrum disorder. Translational Psychiatry, 2020, 10, 204.	2.4	2
65	Overlap between ADHD and Autism – Clinical and Genetic Evidence. Current Psychiatry Reviews, 2014, 10, 143-155.	0.9	1
66	Poster #112 NO EVIDENCE THAT COMMON GENETIC RISK VARIANTS ARE SHARED BETWEEN SCHIZOPHRENIA AND AUTISM. Schizophrenia Research, 2012, 136, S320-S321.	1.1	0
67	The Genetic Architecture of Autism and Related Conditions. , 0, , .		0
68	Genetic Risk Variants Interacting With MIR137: Effects On Cognition, Brain Structure And Brain Function In Patients And Healthy Participants. European Neuropsychopharmacology, 2019, 29, S729-S730.	0.3	0