Subramanian Annapoorni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5307199/publications.pdf

Version: 2024-02-01

73 papers

1,028 citations

471509 17 h-index 477307 29 g-index

73 all docs 73 docs citations

times ranked

73

1408 citing authors

#	Article	IF	Citations
1	Magnetization Reversal Behavior in Electrodeposited Fe–Co–Ni Thin Films. IEEE Transactions on Magnetics, 2022, 58, 1-7.	2.1	1
2	Designed Synthesis of Fe \langle sub \rangle \langle i \rangle x \langle i \rangle \langle sub \rangle Co \langle sub \rangle 100 \hat{a} \hat{a} \hat{a} \hat{a} \hat{b} \hat	2.1	1
3	Magnetization reversal across multiple serial barriers in a single <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	>3.2/mml:	mn>
4	Origin of intense blue-green emission in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Sr</mml:mi><mml:mi>Ti</mml:mi> mathvariant="normal">O<mml:mn>3</mml:mn></mml:mrow></mml:math> thin films with implanted nitrogen ions: An investigation by synchrotron-based experimental techniques. Physical Review B, 2021, 103, .	<mml:msu 3.2</mml:msu 	ıb> <mml:mi 8</mml:mi
5	Bandgap engineering in SrTiO3 thin films by electronic excitations: A synchrotron-based spectroscopic study. Scripta Materialia, 2021, 195, 113725.	5.2	3
6	Photo generated charge transport studies of defects-induced shuttlecock-shaped ZnO/Ag hybrid nanostructures. Nanotechnology, 2021, 32, 305708.	2.6	5
7	Facile strategy to synthesize donut-shaped î±-Fe2O3 nanoparticles for enhanced LPG detection. Sensors and Actuators B: Chemical, 2021, 334, 129668.	7.8	15
8	FeCo nanoparticles as antibacterial agents with improved response in magnetic field: an insight into the associated toxicity mechanism. Nanotechnology, 2021, 32, 335101.	2.6	2
9	Domain state modulation by interfacial diffusion in FePt/FeCo thin films: experimental approach with micromagnetic modelling. Journal of Physics Condensed Matter, 2021, 33, 335805.	1.8	2
10	Nonstoichiometric FePt Nanoclusters for Heated Dot Magnetic Recording Media. ACS Applied Nano Materials, 2021, 4, 7079-7085.	5.0	4
11	Pinning-assisted out-of-plane anisotropy in reverse stack FeCo/FePt intermetallic bilayers for controlled switching in spintronics. Journal of Alloys and Compounds, 2021, 877, 160249.	5.5	4
12	Domain observation in electrochemically deposited FeCo nano-rods by MOKE microscopy and micromagnetics. Journal of Magnetism and Magnetic Materials, 2020, 497, 166064.	2.3	3
13	Facile Synthesis of Highly Magnetic Long-term Stable FeCo Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2020, 33, 1653-1657.	1.8	7
14	Tuning Optical Properties in Nanocomposites. International Journal of Nanoscience, 2020, 19, 1950026.	0.7	2
15	Effect of thermal annealing on thermoelectric properties of BixSb2â°'xTe3 thin films grown by sputtering. Journal of Applied Physics, 2020, 127, 245108.	2.5	6
16	Synthesis of ZnO@Ag dumbbells for highly efficient visible-light photocatalysts. Journal of Physics Condensed Matter, 2020, 32, 405202.	1.8	5
17	A study on defect annealing in GaAs nanostructures by ion beam irradiation. Bulletin of Materials Science, 2020, 43, 1.	1.7	1
18	Studies of Exchange Coupling in FeCo/L1 ₀ -FePt Bilayer Thin Films. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	10

#	Article	IF	Citations
19	Effect of thermal annealing on structural, electrical and thermoelectric properties of p-type Bi0.5Sb1.5Te3. AIP Conference Proceedings, 2019, , .	0.4	3
20	Spin Pumping in Asymmetric Fe ₅₀ Pt ₅₀ /Cu/Fe ₂₀ Ni ₈₀ Trilayer Structure. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900267.	2.4	9
21	Plasmonic response of gold nanoparticle in ZnO-Au hybrid structure. AIP Conference Proceedings, 2019, , .	0.4	O
22	Modelling of strain induced magnetic anisotropy in Au additive FePt thin films. Progress in Natural Science: Materials International, 2019, 29, 517-524.	4.4	7
23	Enhancement in Photocatalytic Activity of SrTiO ₃ byÂTailoring Particle Size and Defects. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900294.	1.8	17
24	Composite Nanostructures for Enhanced Plasmonics. Materials Science Forum, 2019, 950, 165-169.	0.3	1
25	Evolution and growth mechanism of hexagonal ZnO nanorods and their LPG sensing response at low operating temperature. Sensors and Actuators A: Physical, 2019, 293, 207-214.	4.1	21
26	Exchange stiffness variation for thermally annealed FeCo thin films. AIP Conference Proceedings, $2018, \ldots$	0.4	5
27	Structure and Transport Properties of Nickel-Implanted CoSb ₃ Skutterudite Thin Films Synthesized via Pulsed Laser Deposition. ACS Applied Energy Materials, 2018, 1, 5879-5886.	5.1	8
28	Defect Induced Ferromagnetism in Zn/ZnO Interfaces. Crystal Research and Technology, 2018, 53, 1700293.	1.3	1
29	Modelling of Pinningâ€Depinning Reversal Mechanism in Ionâ€rradiated Co/Al ₂ O ₃ Thin Films. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800141.	1.8	1
30	Self-Stabilized Carbon- $L{1}_{0}$ FePt Nanoparticles for Heated Dot Recording Media. IEEE Magnetics Letters, 2018, 9, 1-5.	1.1	85
31	Dense-plasma-driven ultrafast formation of FePt organization on silicon substrate. Bulletin of Materials Science, 2017, 40, 233-238.	1.7	5
32	Structural and optical properties of low energy nitrogen ion implanted SrTiO3 thin films. AIP Conference Proceedings, 2017, , .	0.4	2
33	Exchange hardening in FePt/Fe3Pt dual exchange spring magnet: Monte Carlo modeling. Journal of Alloys and Compounds, 2017, 695, 1014-1019.	5 . 5	12
34	Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions. AIP Conference Proceedings, 2016, , .	0.4	0
35	Understanding the origin of ferromagnetism in Er-doped ZnO system. RSC Advances, 2016, 6, 89242-89249.	3.6	57
36	Gallium arsenide/gold nanostructures deposited using plasma method. AIP Conference Proceedings, 2016, , .	0.4	0

#	Article	IF	Citations
37	Growth of cobalt nanoparticles in Co–Al ₂ O ₃ thin films deposited by RF sputtering. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1309-1316.	1.8	10
38	Origin of open recoil curves in L10-A1 FePt exchange coupled nanocomposite thin film. Journal of Magnetism and Magnetic Materials, 2016, 418, 200-205.	2.3	5
39	Axonic Au Tips Induced Enhancement in Raman Spectra and Biomolecular Sensing. Plasmonics, 2015, 10, 617-623.	3.4	11
40	Fabrication of PANI/ZnO heterojunction. , 2014, , .		O
41	Structural and magnetic transformation in electrochemically synthesized FePt thin films on Si/Pt electrodes. , 2014, , .		1
42	Magnetic memory effects in nickel ferrite/polymer nanocomposites. Applied Physics Letters, 2014, 104, .	3.3	18
43	Auâ€"ZnO hybrid nanostructures prepared by electro-exploding wire technique: Raman signal enhancement and photoluminescence emission quenching. Journal of Materials Science, 2014, 49, 8386-8393.	3.7	1
44	Possibility of room-temperature multiferroism in Mg-doped ZnO. Applied Physics A: Materials Science and Processing, 2014, 114, 453-457.	2.3	45
45	Correlation of interlayer diffusion with the stoichiometric composition of RF sputtered Pt/Co/Pt sandwiched structures. Journal of Materials Science, 2013, 48, 3192-3197.	3.7	7
46	Impact of interfacial interactions on optical and ammonia sensing in zinc oxide/polyaniline structures. Bulletin of Materials Science, 2013, 36, 647-652.	1.7	25
47	A New Route to Glucose Sensing Based on Surface Plasmon Resonance Using Polyindole. Plasmonics, 2013, 8, 487-494.	3.4	21
48	ZnO/PPy Hybrid Heterojunction as an Ultraviolet Photosensor. Journal of Electronic Materials, 2013, 42, 1235-1241.	2.2	12
49	Temperature-dependent magnetic and structural ordering of self-assembled magnetic array of FePt nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	16
50	Effects of Li and Au ion beams irradiation on Makrofol-KG. Radiation Effects and Defects in Solids, 2013, 168, 580-586.	1.2	1
51	Electronic states of self stabilized L10 FePt alloy nanoparticles. Applied Physics A: Materials Science and Processing, 2012, 109, 403-408.	2.3	26
52	Synthesis and characterization of Au–alumina nanocomposites prepared by atom beam coâ€sputtering. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2499-2504.	1.8	11
53	Dispersion of laser droplets using H+ ions and annealing effect on pulsed laser deposited nickel ferrite thin films. Applied Physics A: Materials Science and Processing, 2011, 105, 233-238.	2.3	3
54	Role of anisotropy and interactions in magnetic nanoparticle systems. European Physical Journal B, 2010, 74, 75-80.	1.5	14

#	Article	IF	Citations
55	Effects of an oxygenâ€ion beam (O ⁺⁷ , 100 MeV) and γ irradiation on polypyrrole films. Journal of Applied Polymer Science, 2010, 115, 2502-2507.	2.6	11
56	ZnO nanoparticles prepared by an electroexploding wire technique. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2153-2158.	1.8	11
57	Interaction of oxygen (O+7) ion beam on polyaniline thin films. Indian Journal of Physics, 2009, 83, 943-947.	1.8	11
58	Enhanced Bio-molecular Sensing Capability of LSPR, SPR-ATR Coupled Technique., 2009,,.		4
59	Ag–Au alloy nanoparticles prepared by electro-exploding wire technique. Journal of Nanoparticle Research, 2008, 10, 1027-1036.	1.9	48
60	Metal oxide/polyaniline nanocomposites: Cluster size and composition dependent structural and magnetic properties. Bulletin of Materials Science, 2008, 31, 409-413.	1.7	17
61	Competing magnetic interactions in nickel ferrite nanoparticle clusters: Role of magnetic interactions. Journal of Applied Physics, 2008, 104, .	2.5	19
62	Effects of swift heavy ions irradiation on polypyrrole thin films. Radiation Effects and Defects in Solids, 2008, 163, 139-147.	1.2	31
63	Fluorescence From Metallic Silver and Iron Nanoparticles Prepared by Exploding Wire Technique. Plasmonics, 2007, 2, 5-13.	3.4	77
64	Colloidal dispersions of polyindole. Colloid and Polymer Science, 2005, 283, 575-582.	2.1	23
65	Fluorescent silver nanoparticles via exploding wire technique. Pramana - Journal of Physics, 2005, 65, 815-819.	1.8	24
66	Interaction effects in magnetic oxide nanoparticle systems. Pramana - Journal of Physics, 2005, 65, 739-743.	1.8	5
67	Memory effect in smectic-A phase of ferroelectric liquid crystal. Journal of Applied Physics, 2005, 97, 084106.	2.5	8
68	Is Curie–Weiss law valid in every ferro-to-para transition?. Applied Physics Letters, 2005, 87, 102507.	3.3	13
69	Single domain magnetic arrays: role of disorder and interactions. European Physical Journal B, 2004, 39, 19-25.	1.5	26
70	Effect of field dependent trap occupancy on organic thin film transistor characteristics. Journal of Applied Physics, 2003, 94, 5302.	2.5	12
71	Phase change induced by polypyrrole in iron-oxide polypyrrole nanocomposite. Bulletin of Materials Science, 2001, 24, 563-567.	1.7	49
72	Synthesis and characterization of a copolymer: Poly(aniline-co-fluoroaniline). Journal of Applied Polymer Science, 2001, 81, 1460-1466.	2.6	84

#	Article	IF	CITATIONS
73	Preparation, characterization and optical properties of \hat{l}_{\pm} -Fe2O3 films by sol-spinning process. Bulletin of Materials Science, 1998, 21, 381-385.	1.7	14