Kourosh Kalantar Kalantar-zadeh

List of Publications by Year in Descending Order

 $\textbf{Source:} \ https://exaly.com/author-pdf/530714/kourosh-kalantar-kalantar-zadeh-publications-by-year.pdf$

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

453 papers

36,093 citations

84 h-index 180 g-index

532 ext. papers

41,597 ext. citations

9.7 avg, IF

7.57 L-index

#	Paper	IF	Citations
453	Applications of liquid metals in nanotechnology Nanoscale Horizons, 2022,	10.8	7
452	Noncontact rotation, levitation, and acceleration of flowing liquid metal wires <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	2
451	Emerging Role of Liquid Metals in Sensing ACS Sensors, 2022,	9.2	9
450	Oscillatory bifurcation patterns initiated by seeded surface solidification of liquid metals 2022 , 1, 158-1	69	4
449	Electrospun liquid metal/PVDF-HFP nanofiber membranes with exceptional triboelectric performance. <i>Nano Energy</i> , 2022 , 92, 106713	17.1	6
448	High-Q Phonon-polaritons in Spatially Confined Freestanding &MoO3. ACS Photonics, 2022, 9, 905-913	6.3	1
447	Induction heating for the removal of liquid metal-based implant mimics: A proof-of-concept. <i>Applied Materials Today</i> , 2022 , 27, 101459	6.6	O
446	High-[perovskite membranes as insulators for two-dimensional transistors <i>Nature</i> , 2022 , 605, 262-267	50.4	16
445	Liquid state of post-transition metals for interfacial synthesis of two-dimensional materials. <i>Applied Physics Reviews</i> , 2022 , 9, 021306	17.3	1
444	Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing. <i>ACS Nano</i> , 2021 ,	16.7	14
443	Association between severity of COVID-19 symptoms and habitual food intake in adult outpatients <i>BMJ Nutrition, Prevention and Health</i> , 2021 , 4, 469-478	6.7	1
442	Nanoencapsulation for Probiotic Delivery. ACS Nano, 2021,	16.7	10
441	Liquid metal enabled continuous flow reactor: A proof-of-concept. <i>Matter</i> , 2021 , 4, 4022-4041	12.7	8
440	Liquid-Metal-Enabled Mechanical-Energy-Induced CO Conversion. <i>Advanced Materials</i> , 2021 , e2105789	24	7
439	High- 2D SbO Made Using a Substrate-Independent and Low-Temperature Liquid-Metal-Based Process. <i>ACS Nano</i> , 2021 , 15, 16067-16075	16.7	8
438	Polydopamine Shell as a Ga Reservoir for Triggering Gallium-Indium Phase Separation in Eutectic Gallium-Indium Nanoalloys. <i>ACS Nano</i> , 2021 , 15, 16839-16850	16.7	8
437	Liquid-Metal-Assisted Deposition and Patterning of Molybdenum Dioxide at Low Temperature. ACS Applied Materials & Deposition and Patterning of Molybdenum Dioxide at Low Temperature. ACS	9.5	6

(2021-2021)

436	Bismuth telluride topological insulator synthesized using liquid metal alloys: Test of NO2 selective sensing. <i>Applied Materials Today</i> , 2021 , 22, 100954	6.6	10
435	High-mobility p-type semiconducting two-dimensional ETeO2. <i>Nature Electronics</i> , 2021 , 4, 277-283	28.4	23
434	Near-Field Excited Archimedean-like Tiling Patterns in Phonon-Polaritonic Crystals. <i>ACS Nano</i> , 2021 , 15, 9134-9142	16.7	8
433	Maximum piezoelectricity in a few unit-cell thick planar ZnO 🖪 liquid metal-based synthesis approach. <i>Materials Today</i> , 2021 , 44, 69-77	21.8	16
432	Cytokines: From Clinical Significance to Quantification. <i>Advanced Science</i> , 2021 , 8, e2004433	13.6	29
431	Self-Deposition of 2D Molybdenum Sulfides on Liquid Metals. <i>Advanced Functional Materials</i> , 2021 , 31, 2005866	15.6	22
430	Carbonization of low thermal stability polymers at the interface of liquid metals. <i>Carbon</i> , 2021 , 171, 938	3 -94 5	2
429	Polyphenol-Induced Adhesive Liquid Metal Inks for Substrate-Independent Direct Pen Writing. <i>Advanced Functional Materials</i> , 2021 , 31, 2007336	15.6	37
428	Gallium-Based Liquid Metal Particles for Therapeutics. <i>Trends in Biotechnology</i> , 2021 , 39, 624-640	15.1	26
427	Unique surface patterns emerging during solidification of liquid metal alloys. <i>Nature Nanotechnology</i> , 2021 , 16, 431-439	28.7	46
426	Low dimensional materials for glucose sensing. <i>Nanoscale</i> , 2021 , 13, 11017-11040	7.7	6
425	Recent developments of hybrid piezoEriboelectric nanogenerators for flexible sensors and energy harvesters. <i>Nanoscale Advances</i> , 2021 , 3, 5465-5486	5.1	6
424	Meandering Pattern 433 MHz Antennas for Ingestible Capsules. IEEE Access, 2021, 9, 91874-91882	3.5	5
423	Liquid Metal-Triggered Assembly of Phenolic Nanocoatings with Antioxidant and Antibacterial Properties. <i>ACS Applied Nano Materials</i> , 2021 , 4, 2987-2998	5.6	5
422	Low Melting Temperature Liquid Metals and Their Impacts on Physical Chemistry. <i>Accounts of Materials Research</i> , 2021 , 2, 577-580	7.5	13
421	Gallium Liquid Metal: The Devilß Elixir. Annual Review of Materials Research, 2021, 51, 381-408	12.8	37
420	Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenching. <i>Cell Reports Physical Science</i> , 2021 , 2, 100511	6.1	10
	Nanotip Formation from Liquid Metals for Soft Electronic Junctions. ACS Applied Materials & Description (1988)		

418	Doping Process of 2D Materials Based on the Selective Migration of Dopants to the Interface of Liquid Metals. <i>Advanced Materials</i> , 2021 , 33, e2104793	24	14
417	Post-transition metal/polymer composites for the separation and sensing of alkali metal ions. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 19854-19864	13	3
416	Bluetooth Signal Attenuation Analysis in Human Body Tissue Analogues. <i>IEEE Access</i> , 2021 , 9, 85144-85	15.0	6
415	Microbiome modulation as a novel therapeutic approach in chronic kidney disease. <i>Current Opinion in Nephrology and Hypertension</i> , 2021 , 30, 75-84	3.5	7
414	Interface chemistry of two-dimensional heterostructures - fundamentals to applications. <i>Chemical Society Reviews</i> , 2021 , 50, 4684-4729	58.5	51
413	Supplementing dietary fibres with a low FODMAP diet in irritable bowel syndrome: a randomized controlled crossover trial <i>Clinical Gastroenterology and Hepatology</i> , 2021 ,	6.9	3
412	Gallium nitride formation in liquid metal sonication. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16593-166	5 9 2	13
411	Nucleation and Growth of Polyaniline Nanofibers onto Liquid Metal Nanoparticles. <i>Chemistry of Materials</i> , 2020 , 32, 4808-4819	9.6	30
410	Bi-Sn Catalytic Foam Governed by Nanometallurgy of Liquid Metals. <i>Nano Letters</i> , 2020 , 20, 4403-4409	11.5	27
409	Photolithography@nabled direct patterning of liquid metals. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 7805-7811	7.1	18
408	Polymeric composite membranes for gas separation: State-of-the-art 2D fillers 2020 , 293-306		
407	Exploring Electrochemical Extrusion of Wires from Liquid Metals. <i>ACS Applied Materials & amp;</i> Interfaces, 2020 , 12, 31010-31020	9.5	20
406	Dynamic Temperature Control System for the Optimized Production of Liquid Metal Nanoparticles. <i>ACS Applied Nano Materials</i> , 2020 , 3, 6905-6914	5.6	15
405	Liquid-Metal-Templated Synthesis of 2D Graphitic Materials at Room Temperature. <i>Advanced Materials</i> , 2020 , 32, e2001997	24	44
404	Uncovering Atomic-Scale Stability and Reactivity in Engineered Zinc Oxide Electrocatalysts for Controllable Syngas Production. <i>Advanced Energy Materials</i> , 2020 , 10, 2001381	21.8	19
403	Effective Separation of CO Using Metal-Incorporated rGO Membranes. <i>Advanced Materials</i> , 2020 , 32, e1907580	24	34
402	Liquid Metal-Based Route for Synthesizing and Tuning Gas-Sensing Elements. ACS Sensors, 2020, 5, 1177	7912189	23
401	Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators. Nature Communications, 2020 , 11, 3449	17.4	69

(2020-2020)

400	Peculiar piezoelectricity of atomically thin planar structures. <i>Nanoscale</i> , 2020 , 12, 2875-2901	7.7	25	
399	Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. <i>Nature Electronics</i> , 2020 , 3, 51-58	28.4	73	
398	Considering the Effects of Microbiome and Diet on SARS-CoV-2 Infection: Nanotechnology Roles. <i>ACS Nano</i> , 2020 , 14, 5179-5182	16.7	88	
397	Telecommunications and Data Processing in Flexible Electronic Systems. <i>Advanced Materials Technologies</i> , 2020 , 5, 1900733	6.8	18	
396	Antibacterial Liquid Metals: Biofilm Treatment Magnetic Activation. ACS Nano, 2020, 14, 802-817	16.7	83	
395	Liquid metal-supported synthesis of cupric oxide. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 1656-1665	7.1	18	
394	Boundary-Induced Auxiliary Features in Scattering-Type Near-Field Fourier Transform Infrared Spectroscopy. <i>ACS Nano</i> , 2020 , 14, 1123-1132	16.7	11	
393	Liquid metals and their hybrids as stimulusEesponsive smart materials. <i>Materials Today</i> , 2020 , 34, 92-11	421.8	37	
392	Catalytic Metal Foam by Chemical Melting and Sintering of Liquid Metal Nanoparticles. <i>Advanced Functional Materials</i> , 2020 , 30, 1907879	15.6	33	
391	Broad-spectrum treatment of bacterial biofilms using magneto-responsive liquid metal particles. Journal of Materials Chemistry B, 2020 , 8, 10776-10787	7.3	11	
390	Two-Step Synthesis of Large-Area 2D Bi2S3 Nanosheets Featuring High In-Plane Anisotropy. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2001131	4.6	12	
389	Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sensors, 2020, 5, 3739-3769	9.2	36	
388	Broadband Photodetectors: Liquid-Metal Synthesized Ultrathin SnS Layers for High-Performance Broadband Photodetectors (Adv. Mater. 45/2020). <i>Advanced Materials</i> , 2020 , 32, 2070338	24	2	
387	Liquid Metals in Catalysis for Energy Applications. <i>Joule</i> , 2020 , 4, 2290-2321	27.8	32	
386	Illumination-Induced Phase Segregation and Suppressed Solubility Limit in Br-Rich Mixed-Halide Inorganic Perovskites. <i>ACS Applied Materials & Englishing States</i> , 12, 38376-38385	9.5	15	
385	Response to Comment on Considering the Effects of Microbiome and Diet on SARS-CoV-2 Infection. <i>ACS Nano</i> , 2020 , 14, 12266	16.7	1	
384	Liquid-Metal Synthesized Ultrathin SnS Layers for High-Performance Broadband Photodetectors. <i>Advanced Materials</i> , 2020 , 32, e2004247	24	34	
383	P-type Charge Transport and Selective Gas Sensing of All-Inorganic Perovskite Nanocrystals 2020 , 2, 1368-1374		22	

382	Anisotropic Materials Based on Liquid Metals. <i>Matter</i> , 2020 , 3, 613-614	12.7	1
381	Ultra-thin lead oxide piezoelectric layers for reduced environmental contamination using a liquid metal-based process. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19434-19443	13	14
380	Pulsing Liquid Alloys for Nanomaterials Synthesis. ACS Nano, 2020, 14, 14070-14079	16.7	31
379	Liquid Metal Droplet and Graphene Co-Fillers for Electrically Conductive Flexible Composites. <i>Small</i> , 2020 , 16, e1903753	11	53
378	Magnetic and Conductive Liquid Metal Gels. ACS Applied Materials & amp; Interfaces, 2020, 12, 20119-20	13.8	40
377	Liquid metal dispersion by self-assembly of natural phenolics. <i>Chemical Communications</i> , 2019 , 55, 1129	91 ₅ .8129	9 4 8
376	Intestinal gases: influence on gut disorders and the role of dietary manipulations. <i>Nature Reviews Gastroenterology and Hepatology</i> , 2019 , 16, 733-747	24.2	53
375	Porous Eleocharis@MnPE Layered Hybrid for Synergistic Adsorption and Catalytic Biodegradation of Toxic Azo Dyes from Industrial Wastewater. <i>Environmental Science & Environmental Science & Environme</i>	-2170	60
374	Self-tunable ultrathin carbon nanocups as the electrode material of sodium-ion batteries with unprecedented capacity and stability. <i>Chemical Engineering Journal</i> , 2019 , 364, 578-588	14.7	30
373	Ordered intracrystalline pores in planar molybdenum oxide for enhanced alkaline hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 257-268	13	52
372	Emergence of Liquid Metals in Nanotechnology. ACS Nano, 2019, 13, 7388-7395	16.7	169
371	Electronic Skins Based on Liquid Metals. <i>Proceedings of the IEEE</i> , 2019 , 107, 2168-2184	14.3	45
370	Liquid metals for tuning gas sensitive layers. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 6375-6382	7.1	31
369	High Surface Area to Volume Ratio 3D Nanoporous Nb2O5 for Enhanced Humidity Sensing. <i>Journal of Electronic Materials</i> , 2019 , 48, 3805-3815	1.9	6
368	Lithium Intercalated Molybdenum Disulfide-Coated Cotton Thread as a Viable Nerve Tissue Scaffold Candidate. <i>ACS Applied Nano Materials</i> , 2019 , 2, 2044-2053	5.6	3
367	Investigation of the surface of Ga?Sn?Zn eutectic alloy by the characterisation of oxide nanofilms obtained by the touch-printing method. <i>Nanomaterials</i> , 2019 , 9,	5.4	3
366	Room temperature CO reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. <i>Nature Communications</i> , 2019 , 10, 865	17.4	100
365	Liquid metal coreBhell structures functionalised via mechanical agitation: the example of FieldB metal. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17876-17887	13	26

(2018-2019)

364	Liquid metal synthesis of two-dimensional aluminium oxide platelets to reinforce epoxy composites. <i>Composites Science and Technology</i> , 2019 , 181, 107708	8.6	11
363	Atomically Thin Ga2S3 from Skin of Liquid Metals for Electrical, Optical, and Sensing Applications. <i>ACS Applied Nano Materials</i> , 2019 , 2, 4665-4672	5.6	37
362	Self-Limiting Galvanic Growth of MnO2 Monolayers on a Liquid Metal Applied to Photocatalysis. <i>Advanced Functional Materials</i> , 2019 , 29, 1901649	15.6	81
361	Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy. <i>Nature Communications</i> , 2019 , 10, 4645	17.4	39
360	Coordination Polymer to Atomically Thin, Holey, Metal-Oxide Nanosheets for Tuning Band Alignment. <i>Advanced Materials</i> , 2019 , 31, e1905288	24	20
359	2D Materials: Coordination Polymer to Atomically Thin, Holey, Metal-Oxide Nanosheets for Tuning Band Alignment (Adv. Mater. 52/2019). <i>Advanced Materials</i> , 2019 , 31, 1970370	24	2
358	In Vivo and In Vitro Monitoring of Amyloid Aggregation via BSA@FGQDs Multimodal Probe. <i>ACS Sensors</i> , 2019 , 4, 200-210	9.2	33
357	Wafer-Sized Ultrathin Gallium and Indium Nitride Nanosheets through the Ammonolysis of Liquid Metal Derived Oxides. <i>Journal of the American Chemical Society</i> , 2019 , 141, 104-108	16.4	62
356	Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides. <i>Electronic Structure</i> , 2019 , 1, 015005	2.6	4
355	Atomically thin two-dimensional metal oxide nanosheets and their heterostructures for energy storage. <i>Energy Storage Materials</i> , 2019 , 16, 455-480	19.4	76
354	Functional Liquid Metal Nanoparticles Produced by Liquid-Based Nebulization. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800420	6.8	53
353	Liquid metals: fundamentals and applications in chemistry. <i>Chemical Society Reviews</i> , 2018 , 47, 4073-41	1\$ 8.5	432
352	Degenerately Hydrogen Doped Molybdenum Oxide Nanodisks for Ultrasensitive Plasmonic Biosensing. <i>Advanced Functional Materials</i> , 2018 , 28, 1706006	15.6	84
351	Evolution of 2D tin oxides on the surface of molten tin. <i>Chemical Communications</i> , 2018 , 54, 2102-2105	5.8	17
350	A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. <i>Nature Electronics</i> , 2018 , 1, 79-87	28.4	171
349	Modulation of colonic hydrogen sulfide production by diet and mesalazine utilizing a novel gas-profiling technology. <i>Gut Microbes</i> , 2018 , 9, 510-522	8.8	18
348	A novel mathematical model for the dynamic assessment of gas composition and production in closed or vented fermentation systems. <i>Sensors and Actuators B: Chemical</i> , 2018 , 254, 354-362	8.5	4
347	The safety and sensitivity of a telemetric capsule to monitor gastrointestinal hydrogen production in vivo in healthy subjects: a pilot trial comparison to concurrent breath analysis. <i>Alimentary Pharmacology and Therapeutics</i> , 2018 , 48, 646-654	6.1	30

346	BiO monolayers from elemental liquid bismuth. <i>Nanoscale</i> , 2018 , 10, 15615-15623	7.7	36
345	Soft micro-sensotransmitters emerging. <i>Nature Nanotechnology</i> , 2018 , 13, 770-771	28.7	1
344	Exploring electric field assisted van der Waals weakening of stratified crystals. <i>Applied Materials Today</i> , 2018 , 12, 359-365	6.6	2
343	Liquid Phase Acoustic Wave Exfoliation of Layered MoS2: Critical Impact of Electric Field in Efficiency. <i>Chemistry of Materials</i> , 2018 , 30, 5593-5601	9.6	27
342	Two dimensional PbMoO4: A photocatalytic material derived from a naturally non-layered crystal. <i>Nano Energy</i> , 2018 , 49, 237-246	17.1	37
341	Ultrafast Acoustofluidic Exfoliation of Stratified Crystals. <i>Advanced Materials</i> , 2018 , 30, e1704756	24	26
340	Laser exposure induced alteration of WS 2 monolayers in the presence of ambient moisture. <i>2D Materials</i> , 2018 , 5, 015013	5.9	26
339	Two-Dimensional Transition Metal Oxide and Chalcogenide-Based Photocatalysts. <i>Nano-Micro Letters</i> , 2018 , 10, 23	19.5	182
338	Exfoliation Behavior of van der Waals Strings: Case Study of BiS. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 42603-42611	9.5	23
337	Piezotronic materials and large-scale piezotronics array devices. MRS Bulletin, 2018, 43, 936-940	3.2	24
336	Green Synthesis of Low-Dimensional Aluminum Oxide Hydroxide and Oxide Using Liquid Metal Reaction Media: Ultrahigh Flux Membranes. <i>Advanced Functional Materials</i> , 2018 , 28, 1804057	15.6	51
335	In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. <i>Nature</i> , 2018 , 562, 557-562	50.4	285
334	Printing two-dimensional gallium phosphate out of liquid metal. <i>Nature Communications</i> , 2018 , 9, 3618	17.4	70
333	An in-vitro upper gut simulator for assessing continuous gas production: A proof-of-concept using milk digestion. <i>Journal of Functional Foods</i> , 2018 , 47, 200-210	5.1	2
332	Amorphous MoSx-Coated TiO2 Nanotube Arrays for Enhanced Electrocatalytic Hydrogen Evolution Reaction. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 12589-12597	3.8	61
331	Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. <i>Nature Communications</i> , 2017 , 8, 14482	17.4	172
330	Ingestible Sensors. ACS Sensors, 2017, 2, 468-483	9.2	119
329	Liquid metal enabled microfluidics. <i>Lab on A Chip</i> , 2017 , 17, 974-993	7.2	241

(2016-2017)

328	Patterned films from exfoliated two-dimensional transition metal dichalcogenides assembled at a liquid I quid interface. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6937-6944	7.1	10
327	Hydrogen sensors based on gold nanoclusters assembled onto ZnO nanostructures at low operating temperature. <i>Ceramics International</i> , 2017 , 43, S511-S515	5.1	5
326	Surface Water Dependent Properties of Sulfur-Rich Molybdenum Sulfides: Electrolyteless Gas Phase Water Splitting. <i>ACS Nano</i> , 2017 , 11, 6782-6794	16.7	38
325	Highly active two dimensional EMoO3N for the electrocatalytic hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 24223-24231	13	118
324	Wafer-Scale Synthesis of Semiconducting SnO Monolayers from Interfacial Oxide Layers of Metallic Liquid Tin. <i>ACS Nano</i> , 2017 , 11, 10974-10983	16.7	80
323	A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. <i>Science</i> , 2017 , 358, 332-335	33.3	384
322	Sonication-Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry. <i>Advanced Functional Materials</i> , 2017 , 27, 1702295	15.6	78
321	Molybdenum Oxides - From Fundamentals to Functionality. <i>Advanced Materials</i> , 2017 , 29, 1701619	24	298
320	Quasi physisorptive two dimensional tungsten oxide nanosheets with extraordinary sensitivity and selectivity to NO. <i>Nanoscale</i> , 2017 , 9, 19162-19175	7.7	61
319	A Gallium-Based Magnetocaloric Liquid Metal Ferrofluid. <i>Nano Letters</i> , 2017 , 17, 7831-7838	11.5	67
318	A novel wireless gas sensor based on LTCC technology. <i>Sensors and Actuators B: Chemical</i> , 2017 , 239, 711-717	8.5	48
317	Designing an in-vitro gas profiling system for human faecal samples. <i>Sensors and Actuators B: Chemical</i> , 2017 , 238, 754-764	8.5	13
316	Two dimensional tungsten oxide nanosheets with unprecedented selectivity and sensitivity to NO2 2017 ,		1
315	Sonication synthesis of micro-sized silver nanoparticle/oleic acid liquid marbles: A novel SERS sensing platform. <i>Sensors and Actuators B: Chemical</i> , 2016 , 223, 52-58	8.5	15
314	Excitation dependent bidirectional electron transfer in phthalocyanine-functionalised MoS nanosheets. <i>Nanoscale</i> , 2016 , 8, 16276-16283	7.7	46
313	Liquid Exfoliation of Layered Transition Metal Dichalcogenides for Biological Applications. <i>Current Protocols in Chemical Biology</i> , 2016 , 8, 97-108	1.8	13
312	Potential of in vivo real-time gastric gas profiling: a pilot evaluation of heat-stress and modulating dietary cinnamon effect in an animal model. <i>Scientific Reports</i> , 2016 , 6, 33387	4.9	21
311	Guest Editorial Special Issue on Selected Papers From the IEEE Sensors Conference 2014. <i>IEEE Sensors Journal</i> , 2016 , 16, 3348-3348	4	_

310	Intra-ruminal gas-sensing in real time: a proof-of-concept. Animal Production Science, 2016, 56, 204	1.4	2
309	Liquid-Metal Microdroplets Formed Dynamically with Electrical Control of Size and Rate. <i>Advanced Materials</i> , 2016 , 28, 604-9	24	87
308	Exfoliation Solvent Dependent Plasmon Resonances in Two-Dimensional Sub-Stoichiometric Molybdenum Oxide Nanoflakes. <i>ACS Applied Materials & Discrete Materi</i>	9.5	91
307	Intercalated 2D MoS2 Utilizing a Simulated Sun Assisted Process: Reducing the HER Overpotential. Journal of Physical Chemistry C, 2016 , 120, 2447-2455	3.8	48
306	Biosensors Based on Two-Dimensional MoS2. ACS Sensors, 2016 , 1, 5-16	9.2	246
305	Measuring Methane Production from Ruminants. <i>Trends in Biotechnology</i> , 2016 , 34, 26-35	15.1	61
304	Controlled Electrochemical Deformation of Liquid-Phase Gallium. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 3833-9	9.5	29
303	Acoustically-Driven Trion and Exciton Modulation in Piezoelectric Two-Dimensional MoS2. <i>Nano Letters</i> , 2016 , 16, 849-55	11.5	64
302	Intestinal Gas Capsules: A Proof-of-Concept Demonstration. <i>Gastroenterology</i> , 2016 , 150, 37-9	13.3	50
301	Laser-Induced Dewetting for Precise Local Generation of Au Nanostructures for Tunable Solar Absorption. <i>Advanced Optical Materials</i> , 2016 , 4, 1247-1254	8.1	19
300	Exfoliation of Quasi-Stratified Bi2S3 Crystals into Micron-Scale Ultrathin Corrugated Nanosheets. <i>Chemistry of Materials</i> , 2016 , 28, 8942-8950	9.6	22
299	Ionic imbalance induced self-propulsion of liquid metals. <i>Nature Communications</i> , 2016 , 7, 12402	17.4	116
298	Elastomeric composites for flexible microwave substrates. <i>Journal of Applied Physics</i> , 2016 , 119, 124109	92.5	3
297	High-Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes. <i>Advanced Functional Materials</i> , 2016 , 26, 91-100	15.6	140
296	Enhanced quantum efficiency from a mosaic of two dimensional MoS2 formed onto aminosilane functionalised substrates. <i>Nanoscale</i> , 2016 , 8, 12258-66	7.7	15
295	Two dimensional and layered transition metal oxides. <i>Applied Materials Today</i> , 2016 , 5, 73-89	6.6	313
294	2D WS2/carbon dot hybrids with enhanced photocatalytic activity. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 13563-13571	13	99
293	Reductive exfoliation of substoichiometric MoS2 bilayers using hydrazine salts. <i>Nanoscale</i> , 2016 , 8, 152.	5 7 . / 61	22

(2015-2015)

292	Anodized nanoporous WO3 Schottky contact structures for hydrogen and ethanol sensing. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7994-8001	13	63
291	Generation of catalytically active materials from a liquid metal precursor. <i>Chemical Communications</i> , 2015 , 51, 14026-9	5.8	36
290	A unique in vivo approach for investigating antimicrobial materials utilizing fistulated animals. <i>Scientific Reports</i> , 2015 , 5, 11515	4.9	12
289	A spectrally splitting photovoltaic-thermal hybrid receiver utilising direct absorption and wave interference light filtering. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 139, 71-80	6.4	28
288	A multi-functional bubble-based microfluidic system. <i>Scientific Reports</i> , 2015 , 5, 9942	4.9	34
287	Light driven growth of silver nanoplatelets on 2D MoS2 nanosheet templates. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 4771-4778	7.1	27
286	Physisorption-Based Charge Transfer in Two-Dimensional SnS2 for Selective and Reversible NO2 Gas Sensing. <i>ACS Nano</i> , 2015 , 9, 10313-23	16.7	479
285	Two-step synthesis of luminescent MoS(2)-ZnS hybrid quantum dots. <i>Nanoscale</i> , 2015 , 7, 16763-72	7.7	48
284	Low-temperature fabrication of alkali metal-organic charge transfer complexes on cotton textile for optoelectronics and gas sensing. <i>Langmuir</i> , 2015 , 31, 1581-7	4	43
283	Investigation of Two-Solvent Grinding-Assisted Liquid Phase Exfoliation of Layered MoS2. <i>Chemistry of Materials</i> , 2015 , 27, 53-59	9.6	160
282	Two-Dimensional Transition Metal Dichalcogenides in Biosystems. <i>Advanced Functional Materials</i> , 2015 , 25, 5086-5099	15.6	256
281	2D MoS2 PDMS Nanocomposites for NO2 Separation. <i>Small</i> , 2015 , 11, 5035-40	11	48
280	Electronic Tuning of 2D MoS2 through Surface Functionalization. <i>Advanced Materials</i> , 2015 , 27, 6225-9	24	158
279	Enhanced Gas Permeation through Graphene Nanocomposites. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 13700-13712	3.8	62
278	Human intestinal gas measurement systems: in vitro fermentation and gas capsules. <i>Trends in Biotechnology</i> , 2015 , 33, 208-13	15.1	65
277	Passive wireless gas sensors based on the LTCC technique 2015 ,		2
276	Optical Hydrogen Sensing Based on Hybrid 2D MoO3/Au Nanoparticles. <i>Procedia Engineering</i> , 2015 , 120, 1141-1144		4
275	Plasmon resonances of highly doped two-dimensional MoSII <i>Nano Letters</i> , 2015 , 15, 883-90	11.5	145

274	Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS</i>	9.5	115
273	Optical gas sensing properties of nanoporous Nb2O5 films. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 4751-8	9.5	56
272	Dielectrophoretically controlled Fresnel zone plate. <i>Lab on A Chip</i> , 2015 , 15, 1092-100	7.2	3
271	Two solvent grinding sonication method for the synthesis of two-dimensional tungsten disulphide flakes. <i>Chemical Communications</i> , 2015 , 51, 3770-3	5.8	50
270	The effect of crosslinking temperature on the permeability of PDMS membranes: Evidence of extraordinary CO2 and CH4 gas permeation. <i>Separation and Purification Technology</i> , 2014 , 122, 96-104	8.3	104
269	Liquid Metal/Metal Oxide Frameworks. <i>Advanced Functional Materials</i> , 2014 , 24, 3799-3807	15.6	140
268	High Performance Electrochromic Devices Based on Anodized Nanoporous Nb2O5. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 476-481	3.8	73
267	Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems. <i>Nano Letters</i> , 2014 , 14, 857-63	11.5	215
266	Highly ordered anodized Nb2O5 nanochannels for dye-sensitized solar cells. <i>Electrochemistry Communications</i> , 2014 , 40, 20-23	5.1	49
265	Two dimensional BMoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: Application for H2 gas sensing. <i>Sensors and Actuators B: Chemical</i> , 2014 , 192, 196-204	8.5	157
264	Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15683-15703	13	207
263	Investigation of different nanoparticles for magnetophoretically enabled nanofin heat sinks in microfluidics. <i>Lab on A Chip</i> , 2014 , 14, 1604-13	7.2	6
262	Microfluidic platforms for the investigation of intercellular signalling mechanisms. Small, 2014, 10, 481	0-1216	34
261	Silver nanoparticle/PDMS nanocomposite catalytic membranes for H 2 S gas removal. <i>Journal of Membrane Science</i> , 2014 , 470, 346-355	9.6	35
260	Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes. <i>Advanced Materials</i> , 2014 , 26, 3931-7	24	252
259	PDMS nanocomposites for heat transfer enhancement in microfluidic platforms. <i>Lab on A Chip</i> , 2014 , 14, 3419-26	7.2	62
258	Electrospun Granular Hollow SnO2 Nanofibers Hydrogen Gas Sensors Operating at Low Temperatures. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 3129-3139	3.8	141
257	Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5247-5270	7.1	247

256	Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform. <i>Nanoscale</i> , 2014 , 6, 12780-91	7.7	65
255	Liquid Metal Actuator for Inducing Chaotic Advection. <i>Advanced Functional Materials</i> , 2014 , 24, 5851-58	3 5:8 5.6	144
254	Liquid metal enabled pump. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 3304-9	11.5	230
253	Enhanced Coloration Efficiency for Electrochromic Devices based on Anodized Nb2O5/Electrodeposited MoO3 Binary Systems. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 10867-1087	73 ^{3.8}	40
252	Influence of semiconducting properties of nanoparticle coating on the electrochemical actuation of liquid metal marble. <i>Applied Physics Letters</i> , 2014 , 105, 121607	3.4	20
251	Dynamic Nanofin Heat Sinks. <i>Advanced Energy Materials</i> , 2014 , 4, 1300537	21.8	8
250	Nb2O5 Schottky based ethanol vapour sensors: Effect of metallic catalysts. <i>Sensors and Actuators B: Chemical</i> , 2014 , 202, 74-82	8.5	45
249	CNT/PDMS composite membranes for H2 and CH4 gas separation. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 10494-10501	6.7	75
248	Reduced impurity-driven defect states in anodized nanoporous Nb2O5: the possibility of improving performance of photoanodes. <i>Chemical Communications</i> , 2013 , 49, 6349-51	5.8	21
247	3-D nanorod arrays of metalorganic KTCNQ semiconductor on textiles for flexible organic electronics. <i>RSC Advances</i> , 2013 , 3, 17654	3.7	34
246	Synthesis and Nanoscale Investigation of the Electrical Properties of Quasi-2D Semiconductor Nb \$_{bf 2}\$O\$_{bf 5}\$ Nanosheets. <i>IEEE Nanotechnology Magazine</i> , 2013 , 12, 641-648	2.6	8
245	Semiconductors: Two-Dimensional Molybdenum Trioxide and Dichalcogenides (Adv. Funct. Mater. 32/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 3946-3946	15.6	4
244	A hydrogen/methane sensor based on niobium tungsten oxide nanorods synthesised by hydrothermal method. <i>Sensors and Actuators B: Chemical</i> , 2013 , 184, 118-129	8.5	31
243	A vein-like nanoporous network of Nb2O5 with a higher lithium intercalation discharge cut-off voltage. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11019	13	70
242	Electrochemical control of photoluminescence in two-dimensional MoS(2) nanoflakes. <i>ACS Nano</i> , 2013 , 7, 10083-93	16.7	240
241	Field effect biosensing platform based on 2D EMoO(3). ACS Nano, 2013, 7, 9753-60	16.7	132
2 40	Photochemically induced motion of liquid metal marbles. <i>Applied Physics Letters</i> , 2013 , 103, 174104	3.4	102
239	Improving the hydrogen gas sensing performance of Pt/MoO3 nanoplatelets using a nano thick layer of La2O3. <i>Sensors and Actuators B: Chemical</i> , 2013 , 187, 267-273	8.5	24

238	Nanostructured copper oxides as ethanol vapour sensors. <i>Sensors and Actuators B: Chemical</i> , 2013 , 185, 620-627	8.5	100
237	Alkali ratio control for lead-free piezoelectric thin films utilizing elemental diffusivities in RF plasma. <i>CrystEngComm</i> , 2013 , 15, 7222	3.3	18
236	2013,		2
235	Electrochromic properties of TiO2 nanotubes coated with electrodeposited MoO3. <i>Nanoscale</i> , 2013 , 5, 10353-9	7.7	54
234	Assessment of a Raman micro-spectroscopy/microfluidics unit using a model E. coli/glucose bio-system 2013 ,		1
233	Nanoporous Nb2O5 hydrogen gas sensor. Sensors and Actuators B: Chemical, 2013, 176, 149-156	8.5	102
232	Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property. <i>Electrochemistry Communications</i> , 2013 , 27, 128-132	5.1	51
231	Hydrothermally formed functional niobium oxide doped tungsten nanorods. <i>Nanotechnology</i> , 2013 , 24, 495501	3.4	14
230	In situ SERS probing of nano-silver coated individual yeast cells. <i>Biosensors and Bioelectronics</i> , 2013 , 49, 536-41	11.8	45
229	Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. <i>Advanced Materials</i> , 2013 , 25, 109-14	24	296
228	Silane: A new linker for chromophores in dye-sensitised solar cells. <i>Polyhedron</i> , 2013 , 52, 719-732	2.7	24
227	Two-Dimensional Molybdenum Trioxide and Dichalcogenides. <i>Advanced Functional Materials</i> , 2013 , 23, 3952-3970	15.6	378
226	Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration. <i>Sensors and Actuators B: Chemical</i> , 2013 , 177, 981-988	8.5	30
225	Engineering electrodeposited ZnO films and their memristive switching performance. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10376-84	3.6	45
224	In situ nanoindentation: Probing nanoscale multifunctionality. <i>Progress in Materials Science</i> , 2013 , 58, 1-29	42.2	76
223	Microfluidics and Raman microscopy: current applications and future challenges. <i>Chemical Society Reviews</i> , 2013 , 42, 5880-906	58.5	149
222	Modifying dielectrophoretic response of nonviable yeast cells by ionic surfactant treatment. <i>Analytical Chemistry</i> , 2013 , 85, 6364-71	7.8	17
221	Electrochemically induced actuation of liquid metal marbles. <i>Nanoscale</i> , 2013 , 5, 5949-57	7.7	160

(2012-2013)

220	Enhanced Charge Carrier Mobility in Two-Dimensional High Dielectric Molybdenum Oxide (Adv. Mater. 1/2013). <i>Advanced Materials</i> , 2013 , 25, 108-108	24	8
219	Transition metal oxides La Thermoelectric properties. <i>Progress in Materials Science</i> , 2013 , 58, 1443-1489	42.2	242
218	Reorientation of microfluidic channel enables versatile dielectrophoretic platforms for cell manipulations. <i>Electrophoresis</i> , 2013 , 34, 1407-14	3.6	8
217	MnO2-Based Thermopower Wave Sources with Exceptionally Large Output Voltages. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 9137-9142	3.8	60
216	Atomic Force Microscopy Adhesion Mapping: Revealing Assembly Process in Inorganic Systems. Journal of Physical Chemistry C, 2013 , 117, 19984-19990	3.8	8
215	Liquid Metal Marbles. Advanced Functional Materials, 2013, 23, 144-152	15.6	191
214	Multivariate analysis of apoptotic markers versus cell cycle phase in living human cancer cells by microfluidic cytometry. <i>Proceedings of SPIE</i> , 2013 , 8615,	1.7	1
213	Dielectrophoresis with 3D microelectrodes fabricated by surface tension assisted lithography. <i>Electrophoresis</i> , 2013 , 34, 3150-4	3.6	11
212	Characterization of metal contacts for two-dimensional MoS2 nanoflakes. <i>Applied Physics Letters</i> , 2013 , 103, 232105	3.4	120
211	Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes. <i>NPG Asia Materials</i> , 2013 , 5, e62-e62	10.3	58
210	Transduction Platforms 2013 , 63-148		
209	Development of antifouling of electrochemical solid-state dissolved oxygen sensors based on nanostructured Cu0.4Ru3.4O7 + RuO2 sensing electrodes. <i>Electrochimica Acta</i> , 2012 , 73, 105-111	6.7	29
208	Influence of thickness of sub-micron Cu2O-doped RuO2 electrode on sensing performance of planar electrochemical pH sensors. <i>Materials Letters</i> , 2012 , 75, 165-168	3.3	22
207	H2 sensing performance of optical fiber coated with nano-platelet WO3 film. <i>Sensors and Actuators B: Chemical</i> , 2012 , 166-167, 1-6	8.5	47
206	Nanocomposite carbon-PDMS membranes for gas separation. <i>Sensors and Actuators B: Chemical</i> , 2012 , 161, 982-988	8.5	48
205	On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis. <i>Microfluidics and Nanofluidics</i> , 2012 , 12, 597-606	2.8	42
204	Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. <i>Nature Nanotechnology</i> , 2012 , 7, 699-712	28.7	10871
203	Interaction of hydrogen with ZnO nanopowdersevidence of hydroxyl group formation. Nanotechnology, 2012 , 23, 015705	3.4	34

202	Electrodeposited <code>\(\text{\text{Band E}}\) hase MoO3 Films and Investigation of Their Gasochromic Properties. <i>Crystal Growth and Design</i>, 2012, 12, 1865-1870</code>	3.5	173
201	Enhanced electrochemical heavy metal ion sensor using liquid metal marbles - towards on-chip application 2012 ,		2
200	Thermal analysis of nanofluids in microfluidics using an infrared camera. Lab on A Chip, 2012 , 12, 2520-5	5 7.2	17
199	Influence of electric field on SERS: frequency effects, intensity changes, and susceptible bonds. Journal of the American Chemical Society, 2012 , 134, 4646-53	16.4	36
198	Polyvinylpyrrolidone/polyaniline composite based 36°LYX LiTaO3 Surface Acoustic Wave H2 gas sensor 2012 ,		1
197	The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. <i>Nanoscale</i> , 2012 , 4, 5980-8	7.7	140
196	Enhancing the current density of electrodeposited ZnOLDu2O solar cells by engineering their heterointerfaces. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21767		65
195	Optofluidics incorporating actively controlled micro- and nano-particles. <i>Biomicrofluidics</i> , 2012 , 6, 3150°	13.2	65
194	ZnO based thermopower wave sources. Chemical Communications, 2012, 48, 7462-4	5.8	69
193	Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-switchable reducing agent for enhanced visible and solar light photocatalysis. <i>Langmuir</i> , 2012 , 28, 14470-5	4	86
192	Active control of silver nanoparticles spacing using dielectrophoresis for surface-enhanced Raman scattering. <i>Analytical Chemistry</i> , 2012 , 84, 4029-35	7.8	56
191	Elevated temperature anodized Nb2O5: a photoanode material with exceptionally large photoconversion efficiencies. <i>ACS Nano</i> , 2012 , 6, 4045-53	16.7	150
190	Dynamic manipulation of modes in an optical waveguide using dielectrophoresis. <i>Electrophoresis</i> , 2012 , 33, 2075-85	3.6	7
189	Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. <i>Nanoscale</i> , 2012 , 4, 461-6	7.7	221
188	Interaction of hydrogen with zinc oxide nanorods: why the spacing is important. <i>Nanotechnology</i> , 2011 , 22, 135704	3.4	6
187	Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. <i>Nano Letters</i> , 2011 , 11, 954-9	11.5	192
186	Synthesis of the nanostructured WO3 via anodization at elevated temperature for H2 sensing applications. <i>Procedia Engineering</i> , 2011 , 25, 247-251		23
185	Carrier Mobility of Single-Walled Carbon Nanotube-Reinforced Polyaniline Nanofibers. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16187-16192	3.8	36

184	Sb2Te3 and Bi2Te3 based thermopower wave sources. <i>Energy and Environmental Science</i> , 2011 , 4, 3558	35.4	66
183	Wavefront velocity oscillations of carbon-nanotube-guided thermopower waves: nanoscale alternating current sources. <i>ACS Nano</i> , 2011 , 5, 367-75	16.7	38
182	Gold nanoparticle-decorated keggin ions/TiO2 photococatalyst for improved solar light photocatalysis. <i>Langmuir</i> , 2011 , 27, 6661-7	4	78
181	Hydrogen gas sensing properties of Pt/Ta2O5 Schottky diodes based on Si and SiC substrates. <i>Sensors and Actuators A: Physical</i> , 2011 , 172, 9-14	3.9	22
180	Optical Hydrogen Sensing Properties of Nanostructured Pd/MoO3 Films. Sensor Letters, 2011 , 9, 16-20	0.9	18
179	Dielectrophoresis of micro/nano particles using curved microelectrodes 2011 ,		1
178	The correlation between electric field emission phenomenon and Schottky contact reverse bias characteristics in nanostructured systems. <i>Journal of Applied Physics</i> , 2011 , 109, 114316	2.5	7
177	QCM based mercury vapor sensor modified with polypyrrole supported palladium. <i>Sensors and Actuators B: Chemical</i> , 2011 , 160, 616-622	8.5	25
176	Facile, size-controlled deposition of highly dispersed gold nanoparticles on nitrogen carbon nanotubes for hydrogen sensing. <i>Sensors and Actuators B: Chemical</i> , 2011 , 160, 1034-1042	8.5	18
175	Improved antifouling resistance of electrochemical water quality sensors based on Cu2O-doped RuO2 sensing electrode. <i>Progress in Organic Coatings</i> , 2011 , 70, 67-73	4.8	31
174	Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles. <i>Microfluidics and Nanofluidics</i> , 2011 , 11, 93-104	2.8	11
173	Oscillatory Thermopower Waves Based on Bi2Te3 Films. <i>Advanced Functional Materials</i> , 2011 , 21, 2072-	20 <i>7.6</i>	53
172	Nanostructured Tungsten Oxide Properties, Synthesis, and Applications. <i>Advanced Functional Materials</i> , 2011 , 21, 2175-2196	15.6	994
171	Dielectrophoretic platforms for bio-microfluidic systems. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 1800-	1 4 1.8	266
170	NanoDYNAMITE. IEEE Spectrum, 2011, 48, 44-49	1.7	35
169	Dielectrophoresis-Raman spectroscopy system for analysing suspended nanoparticles. <i>Lab on A Chip</i> , 2011 , 11, 921-8	7.2	46
168	In situ Raman spectroscopy of H2 interaction with WO3 films. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 7330-9	3.6	63
167	. IEEE Sensors Journal, 2011 , 11, 1913-1916	4	2

166	Dynamic analysis of drug-induced cytotoxicity using chip-based dielectrophoretic cell immobilization technology. <i>Analytical Chemistry</i> , 2011 , 83, 2133-44	7.8	52
165	2011,		1
164	In Situ Raman Spectroscopy of H2 Gas Interaction with Layered MoO3. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 10757-10763	3.8	150
163	Interfacing cell-based assays in environmental scanning electron microscopy using dielectrophoresis. <i>Analytical Chemistry</i> , 2011 , 83, 3217-21	7.8	19
162	Surface morphology induced localized electric field and piezoresponse enhancement in nanostructured thin films. <i>ACS Nano</i> , 2011 , 5, 1067-72	16.7	4
161	Potentiometric solid-state sensor for DO measurement in water using sub-micron Cu0.4Ru3.4O7+RuO2 sensing electrode. <i>Sensors and Actuators B: Chemical</i> , 2011 , 153, 312-320	8.5	14
160	Structural and gas-sensing properties of CuOluxFe3MO4 nanostructured thin films. <i>Sensors and Actuators B: Chemical</i> , 2011 , 153, 117-124	8.5	25
159	Polyvinylpyrrolidone/Multiwall Carbon Nanotube Composite Based 36°1YX LiTaO3 Surface Acoustic Wave For Hydrogen Gas Sensing Applications 2011 ,		1
158	A Hydrogen Gas Sensor Based on Pt/Nanostructured WO3/SiC Schottky Diode. <i>Sensor Letters</i> , 2011 , 9, 11-15	0.9	18
157	Pt/Nanograined ZnO/SiC Schottky Diode Based Hydrogen and Propene Sensor. <i>Sensor Letters</i> , 2011 , 9, 55-58	0.9	4
156	Layered Surface Acoustic Wave Hydrogen Sensor with Nanoporous Polyaniline as the Active Layer. <i>Sensor Letters</i> , 2011 , 9, 73-76	0.9	2
155	WO3-Au-Pt Nanocrystalline Thin Films as Optical Gas Sensors. <i>Sensor Letters</i> , 2011 , 9, 595-599	0.9	6
154	Guided SH-SAW Sensing System for Liquid Viscosity Sensing Applications. Sensor Letters, 2011, 9, 605-6	08 .9	4
153	Pt/Nanostructured RuO2/SiC Schottky Diode Based Hydrogen Gas Sensors. <i>Sensor Letters</i> , 2011 , 9, 797	-809	3
152	SAW Gas Sensors with Metal Oxides Nanoplatelets Layers. <i>Sensor Letters</i> , 2011 , 9, 920-924	0.9	3
151	SAW Gas Sensors with Titania Nanotubes Layers. <i>Sensor Letters</i> , 2011 , 9, 925-928	0.9	2
150	Gas Sensing Properties of Interconnected ZnO Nanowires. Sensor Letters, 2011, 9, 929-935	0.9	7
149	Dielectrophoretically tuneable optical waveguides using nanoparticles in microfluidics. <i>Applied Physics Letters</i> , 2010 , 96, 101108	3.4	11

148	Nanorod based Schottky contact gas sensors in reversed bias condition. <i>Nanotechnology</i> , 2010 , 21, 265	55924	85
147	Enhancement of electric field properties of Pt/nanoplatelet MoO3/SiC Schottky diode. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 025103	3	21
146	Synthesis of Nanostructured Tungsten Oxide Thin Films: A Simple, Controllable, Inexpensive, Aqueous Sol © el Method. <i>Crystal Growth and Design</i> , 2010 , 10, 430-439	3.5	141
145	Uniformly Dispersed PtNi Nanoparticles on Nitrogen-Doped Carbon Nanotubes for Hydrogen Sensing. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 238-242	3.8	52
144	Platinum/Graphene Nanosheet/SiC Contacts and Their Application for Hydrogen Gas Sensing. Journal of Physical Chemistry C, 2010 , 114, 13796-13801	3.8	154
143	Synthesis of Atomically Thin WO3 Sheets from Hydrated Tungsten Trioxide. <i>Chemistry of Materials</i> , 2010 , 22, 5660-5666	9.6	187
142	Synthesis of nanometre-thick MoO3 sheets. <i>Nanoscale</i> , 2010 , 2, 429-33	7.7	207
141	Graphene/Polyaniline Nanocomposite for Hydrogen Sensing. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 16168-16173	3.8	387
140	Dye-sensitized solar cells based on WO3. <i>Langmuir</i> , 2010 , 26, 19148-52	4	293
139	Size based separation of microparticles using a dielectrophoretic activated system. <i>Journal of Applied Physics</i> , 2010 , 108, 034904	2.5	22
138	Pt/MoO 2010 ,		2
137	Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics. <i>ACS Nano</i> , 2010 , 4, 6251-9	16.7	78
136	Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. <i>Analytical and Bioanalytical Chemistry</i> , 2010 , 396, 401-20	4.4	213
135	Hydrogen gas sensing properties of Pt/Ta2O5 Schottky diodes based on Si and SiC substrates. <i>Procedia Engineering</i> , 2010 , 5, 147-151		6
134	Gas sensing properties of thermally evaporated lamellar MoO3. <i>Sensors and Actuators B: Chemical</i> , 2010 , 145, 13-19	8.5	220
133	Dielectrophoretic-activated cell sorter based on curved microelectrodes. <i>Microfluidics and Nanofluidics</i> , 2010 , 9, 411-426	2.8	44
132	Dielectrophoretically assembled particles: feasibility for optofluidic systems. <i>Microfluidics and Nanofluidics</i> , 2010 , 9, 755-763	2.8	9
131	Aqueous synthesis of interconnected ZnO nanowires using spray pyrolysis deposited seed layers. <i>Materials Letters</i> , 2010 , 64, 291-294	3.3	82

130	Novel tuneable optical elements based on nanoparticle suspensions in microfluidics. <i>Electrophoresis</i> , 2010 , 31, 1071-9	3.6	17
129	Particle trapping using dielectrophoretically patterned carbon nanotubes. <i>Electrophoresis</i> , 2010 , 31, 136	5 6 :F5	22
128	Dielectrophoretically patterned carbon nanotubes to sort microparticles. <i>Electrophoresis</i> , 2010 , 31, 338	03990	8
127	H2 sensing performance of optical fiber coated with nano-platelet WO3 film. <i>Procedia Engineering</i> , 2010 , 5, 1204-1207		4
126	Comparison study of conductometric, optical and SAW gas sensors based on porous solgel silica films doped with NiO and Au nanocrystals. <i>Sensors and Actuators B: Chemical</i> , 2010 , 143, 567-573	8.5	28
125	Reversed bias Pt/nanostructured ZnO Schottky diode with enhanced electric field for hydrogen sensing. <i>Sensors and Actuators B: Chemical</i> , 2010 , 146, 507-512	8.5	69
124	Electrospun PVP fibers and gas sensing properties of PVP/36°LYX LiTaO3 SAW device. <i>Sensors and Actuators B: Chemical</i> , 2010 , 145, 674-679	8.5	27
123	Comparative study of the gasochromic performance of Pd/WO3 and Pt/WO3 nanotextured thin films for low concentration hydrogen sensing 2009 ,		1
122	Pt/graphene nano-sheet based hydrogen gas sensor 2009 ,		9
121	Reverse biased Pt/nanostructured MoO3/SiC Schottky diode based hydrogen gas sensors. <i>Applied Physics Letters</i> , 2009 , 94, 013504	3.4	49
120	Reverse Biased Schottky Contact Hydrogen Sensors Based on Pt/nanostructured ZnO/SiC 2009,		2
119	Seeded growth of ZnO nanorods from NaOH solutions. <i>Materials Letters</i> , 2009 , 63, 249-251	3.3	11
118	Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes. <i>Electrophoresis</i> , 2009 , 30, 3707-17	3.6	56
117	Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles. <i>Microfluidics and Nanofluidics</i> , 2009 , 7, 633-645	2.8	44
116	Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2. <i>Sensors and Actuators B: Chemical</i> , 2009 , 137, 115-120	8.5	131
115	Hydrogen gas sensor based on highly ordered polyaniline nanofibers. <i>Sensors and Actuators B: Chemical</i> , 2009 , 137, 529-532	8.5	80
114	Nanostructured WO3 films using high temperature anodization. <i>Sensors and Actuators B: Chemical</i> , 2009 , 142, 230-235	8.5	42
113	Effect of crystallographic orientation on the anodic formation of nanoscale pores/tubes in TiO2 films. <i>Applied Surface Science</i> , 2009 , 256, 120-123	6.7	14

(2008-2009)

112	Nanoporous WO3 from anodized RF sputtered tungsten thin films. <i>Electrochemistry Communications</i> , 2009 , 11, 768-771	5.1	65
111	Nanoporous TiO2 thin film based conductometric H2 sensor. <i>Thin Solid Films</i> , 2009 , 518, 1294-1298	2.2	44
110	ZnO nanostructures grown on epitaxial GaN. <i>Thin Solid Films</i> , 2009 , 518, 1053-1056	2.2	2
109	Nanoporous titanium oxide synthesized from anodized Filtered Cathodic Vacuum Arc Ti thin films. <i>Thin Solid Films</i> , 2009 , 518, 1180-1184	2.2	7
108	Synthesis and electrochemical properties of template-based polyaniline nanowires and template-free nanofibril arrays: Two potential nanostructures for gas sensors. <i>Sensors and Actuators B: Chemical</i> , 2009 , 136, 1-7	8.5	36
107	Layered SAW gas sensor based on CSA synthesized polyaniline nanofiber on AlN on 64ºYX LiNbO3 for H2 sensing. <i>Sensors and Actuators B: Chemical</i> , 2009 , 138, 85-89	8.5	46
106	Layered Surface Acoustic Wave Hydrogen Sensor Based on Polyethylaniline Nanofibers. <i>Procedia Chemistry</i> , 2009 , 1, 220-223		3
105	Optical H2 Sensing Performance of Anodized Nanoporous TiO2 Thin Films. <i>Procedia Chemistry</i> , 2009 , 1, 951-954		10
104	A comparison of forward and reverse bias operation in a Pt/nanostructured ZnO Schottky diode based hydrogen sensor. <i>Procedia Chemistry</i> , 2009 , 1, 979-982		13
103	Graphene-like nano-sheets for surface acoustic wave gas sensor applications. <i>Chemical Physics Letters</i> , 2009 , 467, 344-347	2.5	321
102	Fast formation of thick and transparent titania nanotubular films from sputtered Ti. <i>Electrochemistry Communications</i> , 2009 , 11, 1308-1311	5.1	38
101	High-temperature anodized WO3 nanoplatelet films for photosensitive devices. <i>Langmuir</i> , 2009 , 25, 95	45-51	103
100	Anodization of Ti thin film deposited on ITO. <i>Langmuir</i> , 2009 , 25, 509-14	4	76
99	Fabrication, Structural Characterization and Testing of a Nanostructured Tin Oxide Gas Sensor. <i>IEEE Sensors Journal</i> , 2009 , 9, 563-568	4	15
98	Transition from n- to p-Type of Spray Pyrolysis Deposited Cu Doped ZnO Thin Films for NO2 Sensing. <i>Sensor Letters</i> , 2009 , 7, 621-628	0.9	63
97	Electrowetting of superhydrophobic ZnO nanorods. <i>Langmuir</i> , 2008 , 24, 5091-8	4	7 ¹
96	Nanotechnology-Enabled Sensors 2008,		51
95	A polyaniline/WO3 nanofiber composite-based ZnO/64🖰YX LiNbO3 SAW hydrogen gas sensor. <i>Synthetic Metals</i> , 2008 , 158, 29-32	3.6	71

94	Conductometric Hydrogen Gas Sensor Based on Polypyrrole Nanofibers. <i>IEEE Sensors Journal</i> , 2008 , 8, 365-370	4	54
93	Conductometric sensor based on nanostructured titanium oxide thin film deposited on polyimide substrate with dissimilar metallic electrodes 2008 ,		3
92	2008,		1
91	Mixing characterisation for a serpentine microchannel equipped with embedded barriers 2008,		1
90	A hydrogen gas sensor fabricated from polythiophene nanofibers deposited on a 36LYX LiTaO 3 layered surface acoustic wave transducer 2008 ,		1
89	Pt/ZnO/SiC thin film for hydrogen gas sensing 2008 ,		2
88	Nanostructured SnO(2) films prepared from evaporated Sn and their application as gasßensors. <i>Nanotechnology</i> , 2008 , 19, 125504	3.4	37
87	Graphene-like nano-Sheets/36ºLiTaO3 surface acoustic wave hydrogen gas sensor 2008 ,		4
86	Titanium Dioxide-Based64?YXLiNbO3Surface Acoustic Wave Hydrogen Gas Sensors. <i>Journal of Sensors</i> , 2008 , 2008, 1-5	2	5
85	Polypyrrole nanofiber surface acoustic wave gas sensors. <i>Sensors and Actuators B: Chemical</i> , 2008 , 134, 826-831	8.5	101
84	Effect of Bi3+ ion on piezoelectric properties of K x Na1⊠ NbO3. <i>Journal of Electroceramics</i> , 2008 ,		
	21, 629-632	1.5	9
83	21, 629-632 Fabrication of nanostructured TiO2 by anodization: A comparison between electrolytes and substrates. Sensors and Actuators B: Chemical, 2008, 130, 25-31	1.5 8.5	51
8 ₃	Fabrication of nanostructured TiO2 by anodization: A comparison between electrolytes and		
	Fabrication of nanostructured TiO2 by anodization: A comparison between electrolytes and substrates. <i>Sensors and Actuators B: Chemical</i> , 2008 , 130, 25-31 Gold Coated Nanostructured Molybdenum Oxide Mercury Vapour Quartz Crystal Microbalance	8.5	51
82	Fabrication of nanostructured TiO2 by anodization: A comparison between electrolytes and substrates. <i>Sensors and Actuators B: Chemical</i> , 2008 , 130, 25-31 Gold Coated Nanostructured Molybdenum Oxide Mercury Vapour Quartz Crystal Microbalance Sensor. <i>Sensor Letters</i> , 2008 , 6, 231-236 HYDROGEN GAS SENSING PERFORMANCE OF Pt/SnO2 NANOWIRES/SiC MOS DEVICES.	0.9	7
8 ₂	Fabrication of nanostructured TiO2 by anodization: A comparison between electrolytes and substrates. Sensors and Actuators B: Chemical, 2008, 130, 25-31 Gold Coated Nanostructured Molybdenum Oxide Mercury Vapour Quartz Crystal Microbalance Sensor. Sensor Letters, 2008, 6, 231-236 HYDROGEN GAS SENSING PERFORMANCE OF Pt/SnO2 NANOWIRES/SiC MOS DEVICES. International Journal on Smart Sensing and Intelligent Systems, 2008, 1, 771-783	0.9	7
82 81 80	Fabrication of nanostructured TiO2 by anodization: A comparison between electrolytes and substrates. <i>Sensors and Actuators B: Chemical</i> , 2008 , 130, 25-31 Gold Coated Nanostructured Molybdenum Oxide Mercury Vapour Quartz Crystal Microbalance Sensor. <i>Sensor Letters</i> , 2008 , 6, 231-236 HYDROGEN GAS SENSING PERFORMANCE OF Pt/SnO2 NANOWIRES/SiC MOS DEVICES. <i>International Journal on Smart Sensing and Intelligent Systems</i> , 2008 , 1, 771-783 Density Functional Theory Study of ZnO Nanostructures for NO and NO2 Sensing 2007 ,	8.5 0.9 0.4	51 7 13

(2006-2007)

76	Layered SAW gas sensor with single-walled carbon nanotube-based nanocomposite coating. <i>Sensors and Actuators B: Chemical</i> , 2007 , 127, 168-178	8.5	77
75	Nitrogen dioxide gas sensors based on titanium dioxide thin films deposited on langasite. <i>Thin Solid Films</i> , 2007 , 515, 8738-8743	2.2	22
74	A polyaniline nanofibre electrode and its application in a self-powered photoelectrochromic cell. <i>Nanotechnology</i> , 2007 , 18, 015201	3.4	32
73	Spatial Sensitivity Distribution of Surface Acoustic Wave Resonator Sensors. <i>IEEE Sensors Journal</i> , 2007 , 7, 204-212	4	4
72	Characterization of ZnO Nanobelt-Based Gas Sensor for \${rm H}_{2}\$, \${rm NO}_{2}\$, and Hydrocarbon Sensing. <i>IEEE Sensors Journal</i> , 2007 , 7, 919-924	4	192
71	3D Modeling and Simulation of SH-SAW Devices Using the Finite Element Method 2007 ,		2
70	Optical and conductivity dependence on doping concentration of polyaniline nanofibers 2007,		1
69	Electrochemical Release of Immobilized IgG Protein. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1010, 1		
68	Anodization of Sputtered Titanium Films. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1023, 1		
67	Hydrogen gas sensor fabricated from polyanisidine nanofibers deposited on 36°LYX LiTaO 3 layered surface acoustic wave transducer 2007 ,		1
66	Pt/SnO2 Nanowires/SiC Based Hydrogen Gas Sensor 2007 ,		1
65	Polyaniline Nanofiber Based Surface Acoustic Wave Gas Sensors E ffect of Nanofiber Diameter on \$hbox{H}_{2}\$ Response. <i>IEEE Sensors Journal</i> , 2007 , 7, 213-218	4	68
64	SAW-based gas sensors with rf sputtered InOx and PECVD SiNx films: Response to H2 and O3 gases. <i>Sensors and Actuators B: Chemical</i> , 2006 , 118, 362-367	8.5	20
63	Comparison between conductometric and layered surface acoustic wave hydrogen gas sensors. <i>Smart Materials and Structures</i> , 2006 , 15, S131-S136	3.4	15
62	The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease?. <i>Clinical Journal of the American Society of Nephrology: CJASN</i> , 2006 , 1 Suppl 1, S9-18	6.9	126
61	Carbon Monoxide Gas Sensor Based on Titanium Dioxide Nanocrystalline with a Langasite Substrate 2006 ,		2
60	Nanomaterial Based Room Temperature Hydrogen Gas Sensors 2006 ,		2
	3K-5 Electrical Parameter Extraction of a Flexural Plate Wave Device Using the Finite Element		

58	A layered surface acoustic wave gas sensor based on a polyaniline/In2O3nanofibre composite. <i>Nanotechnology</i> , 2006 , 17, 4488-4492	3.4	184
57	A Room Temperature Polyaniline/SnO2 Nanofiber Composite Based Layered ZnO/64🛛 YX LiNbO3 SAW Hydrogen Gas Sensor 2006 ,		1
56	Formation of nanoporous titanium oxide films on silicon substrates using an anodization process. <i>Nanotechnology</i> , 2006 , 17, 808-814	3.4	58
55	Nanostructured Molybdenum Oxide Gas Sensors 2006 ,		1
54	Camphor sulfonic acid-doped polyaniline nanofiber-based 64oYX LiNbO 3 SAW hydrogen gas sensor 2006 ,		1
53	Association of anemia with outcomes in men with moderate and severe chronic kidney disease. <i>Kidney International</i> , 2006 , 69, 560-4	9.9	120
52	Integrated microthermoelectric cooler for microfluidic channels. <i>Experimental Thermal and Fluid Science</i> , 2006 , 30, 821-828	3	10
51	Layered WO3/ZnO/36lLiTaO3 SAW gas sensor sensitive towards ethanol vapour and humidity. <i>Sensors and Actuators B: Chemical</i> , 2006 , 117, 442-450	8.5	48
50	Comparison of ZnO/64©LiNbO3 and ZnO/36©LiTaO3 Surface Acoustic Wave Devices for Sensing Applications. <i>Sensor Letters</i> , 2006 , 4, 135-138	0.9	8
49	Hydrogen Gas Sensor Based on SbxOy Nanostructures with a Langasite Substrate. <i>Sensor Letters</i> , 2006 , 4, 419-425	0.9	6
48	Development of a conductive photoresist with a mixture of SU-8 and HCl doped polyaniline 2005,		3
47	Thermoelectric properties of bismuth telluride thin films deposited by radio frequency magnetron sputtering 2005 ,		14
46	Comparative study of surface acoustic wave based hydrogen sensors with: InO \times /SiN \times /36 $^{\circ}$ YX LiTaO 3 structure 2005 , 6035, 333		
45	Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts. <i>Sensors and Actuators B: Chemical</i> , 2005 , 108, 154-158	8.5	153
44	Highly sensitive layered ZnO/LiNbO3 SAW device with InOx selective layer for NO2 and H2 gas sensing. <i>Sensors and Actuators B: Chemical</i> , 2005 , 111-112, 207-212	8.5	50
43	Layered SAW hydrogen sensor with modified tungsten trioxide selective layer. <i>Sensors and Actuators B: Chemical</i> , 2005 , 108, 553-557	8.5	48
42	Optimum Sensitive Area of Surface Acoustic Wave Resonator Chemical and Bio-Sensors 2005,		1
41	Comparison of Conductometric Gas Sensitivity of Surface Acoustic Wave Modes in Layered Structures. <i>Sensor Letters</i> , 2005 , 3, 66-70	0.9	7

(1995-2004)

40	Microstructural Characterisation of RF Magnetron Sputtered ZnO Thin Films on SiC. <i>Solid State Phenomena</i> , 2004 , 99-100, 123-126	0.4	1
39	Association between serum ferritin and measures of inflammation, nutrition and iron in haemodialysis patients. <i>Nephrology Dialysis Transplantation</i> , 2004 , 19, 141-9	4.3	226
38	Numerical calculation of SAW sensitivity: application to ZnO/LiTaO3 transducers. <i>Sensors and Actuators A: Physical</i> , 2004 , 115, 456-461	3.9	51
37	Comparison between conductometric and layered SAW hydrogen gas sensor 2004,		2
36	Layered SAW nitrogen dioxide sensor with WO 3 selective layer 2003,		1
35	Novel Love mode surface acoustic wave based immunosensors. <i>Sensors and Actuators B: Chemical</i> , 2003 , 91, 143-147	8.5	46
34	Comparison of layered based SAW sensors. Sensors and Actuators B: Chemical, 2003, 91, 303-308	8.5	19
33	Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants. <i>Sensors and Actuators B: Chemical</i> , 2003 , 93, 431-434	8.5	114
32	p- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique. <i>Sensors and Actuators B: Chemical</i> , 2003 , 93, 562-565	8.5	116
31	A Layered Surface Acoustic Wave ZnO/LiTaO3 Structure with a WO3 Selective Layer for Hydrogen Sensing. <i>Sensor Letters</i> , 2003 , 1, 33-36	0.9	29
30	A novel Love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications. <i>Sensors and Actuators A: Physical</i> , 2002 , 100, 135-143	3.9	59
29	Finite-element analysis for simulation of layered SAW devices with XY LiNbO 3 substrate 2002,		1
28	Love mode layered surface acoustic wave filters. <i>Electronics Letters</i> , 2001 , 37, 802	1.1	4
27	Solgel prepared MoO3INO3 thin-films for O2 gas sensing. <i>Sensors and Actuators B: Chemical</i> , 2001 , 77, 478-483	8.5	97
26	Diagnosis of hemochromatosis. <i>Annals of Internal Medicine</i> , 1999 , 131, 311	8	5
25	Total iron-binding capacity-estimated transferrin correlates with the nutritional subjective global assessment in hemodialysis patients. <i>American Journal of Kidney Diseases</i> , 1998 , 31, 263-72	7.4	129
24	Nontraumatic bilateral rupture of patellar tendons in a diabetic dialysis patient with secondary hyperparathyroidism. <i>Nephrology Dialysis Transplantation</i> , 1997 , 12, 1988-90	4.3	23
23	Diagnosis of iron deficiency anemia in renal failure patients during the post-erythropoietin era. <i>American Journal of Kidney Diseases</i> , 1995 , 26, 292-9	7.4	144

22	Comprehensive analysis of SAW sensor performance in liquid media by Greenß function method	3
21	Finite Element Modelling of Flexural Plate Devices	1
20	A 3-dimensional finite element approach for simulating acoustic wave propagation in layered SAW devices	17
19	A room temperature polyaniline nanofiber hydrogen gas sensor	4
18	ZnO Nanobelt Based Conductometric H2 and NO2 Gas Sensors	10
17	H/sub 2/ and NO/sub 2/ gas sensors with ZnO nanobelt layer on 36/spl deg/ LiTaO/sub 3/ and 64/spl deg/ LiNbO/sub 3/ SAW transducers	1
16	Palladium nanowire hydrogen sensor based on a SAW transducer	1
15	A novel Love mode device with nanocrystalline ZnO film for gas sensing applications	1
14	Love mode SAW sensors with ZnO layer operating in gas and liquid media	2
13	A layered SAW device based on ZnO/LiTaO/sub 3/ for liquid media sensing applications	6
12	Investigation of gas sensors for cabin air quality monitoring	1
11	Study of novel Love mode surface acoustic wave filters	4
10	A finite element approach for 3-dimensional simulation of layered acoustic wave transducers	4
9	Vehicle cabin air quality monitor using gas sensors for improved safety	6
8	Ventilation control for improved cabin air quality and vehicle safety	3
7	A novel Love mode SAW sensor with ZnO layer operating in gas and liquid media	3
6	Gallium-Based Liquid Metal Reaction Media for Interfacial Precipitation of Bismuth Nanomaterials with Controlled Phases and Morphologies. <i>Advanced Functional Materials</i> ,2108673	10
5	Intermetallic wetting enabled high resolution liquid metal patterning for 3D and flexible electronics. Journal of Materials Chemistry C ,	12

LIST OF PUBLICATIONS

4	Liquid metal batteries for future energy storage. Energy and Environmental Science,	35.4	32
3	Post-Transition Metal Electrodes for Sensing Heavy Metal Ions by Stripping Voltammetry. <i>Advanced Materials Technologies</i> ,2100760	6.8	2
2	Soft Liquid Metal Infused Conductive Sponges. Advanced Materials Technologies, 2101500	6.8	6
1	Cell-Mediated Biointerfacial Phenolic Assembly for Probiotic Nano Encapsulation. <i>Advanced Functional Materials</i> ,2200775	15.6	2