Kourosh Kalantar Kalantar-zadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/530714/publications.pdf Version: 2024-02-01

	2311	2116
47,438	98	203
citations	h-index	g-index
500		
532	532	45144
docs citations	times ranked	citing authors
	47,438 citations 532 docs citations	47,438 citations 532 docs citations 2311 98 h-index 532 times ranked

#	Article	IF	CITATIONS
1	Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7, 699-712.	15.6	13,346
2	Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications. Advanced Functional Materials, 2011, 21, 2175-2196.	7.8	1,198
3	Liquid metals: fundamentals and applications in chemistry. Chemical Society Reviews, 2018, 47, 4073-4111.	18.7	763
4	Physisorption-Based Charge Transfer in Two-Dimensional SnS ₂ for Selective and Reversible NO ₂ Gas Sensing. ACS Nano, 2015, 9, 10313-10323.	7.3	624
5	A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science, 2017, 358, 332-335.	6.0	576
6	In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 2018, 562, 557-562.	13.7	506
7	Molybdenum Oxides – From Fundamentals to Functionality. Advanced Materials, 2017, 29, 1701619.	11.1	447
8	Twoâ€Đimensional Molybdenum Trioxide and Dichalcogenides. Advanced Functional Materials, 2013, 23, 3952-3970.	7.8	443
9	Graphene/Polyaniline Nanocomposite for Hydrogen Sensing. Journal of Physical Chemistry C, 2010, 114, 16168-16173.	1.5	425
10	Two dimensional and layered transition metal oxides. Applied Materials Today, 2016, 5, 73-89.	2.3	400
11	Enhanced Charge Carrier Mobility in Twoâ€Ðimensional High Dielectric Molybdenum Oxide. Advanced Materials, 2013, 25, 109-114.	11.1	355
12	Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chemical Physics Letters, 2009, 467, 344-347.	1.2	354
13	Liquid metal enabled microfluidics. Lab on A Chip, 2017, 17, 974-993.	3.1	354
14	Dye-Sensitized Solar Cells Based on WO ₃ . Langmuir, 2010, 26, 19148-19152.	1.6	329
15	Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. Journal of Materials Chemistry C, 2014, 2, 5247-5270.	2.7	323
16	Dielectrophoretic platforms for bio-microfluidic systems. Biosensors and Bioelectronics, 2011, 26, 1800-1814.	5.3	318
17	Biosensors Based on Two-Dimensional MoS ₂ . ACS Sensors, 2016, 1, 5-16.	4.0	310
18	Tunable Plasmon Resonances in Twoâ€Đimensional Molybdenum Oxide Nanoflakes. Advanced Materials, 2014, 26, 3931-3937.	11.1	308

#	Article	IF	CITATIONS
19	Twoâ€Ðimensional Transition Metal Dichalcogenides in Biosystems. Advanced Functional Materials, 2015, 25, 5086-5099.	7.8	306
20	Transition metal oxides – Thermoelectric properties. Progress in Materials Science, 2013, 58, 1443-1489.	16.0	302
21	Liquid metal enabled pump. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3304-3309.	3.3	299
22	Electrochemical Control of Photoluminescence in Two-Dimensional MoS ₂ Nanoflakes. ACS Nano, 2013, 7, 10083-10093.	7.3	282
23	Emergence of Liquid Metals in Nanotechnology. ACS Nano, 2019, 13, 7388-7395.	7.3	269
24	Association between serum ferritin and measures of inflammation, nutrition and iron in haemodialysis patients. Nephrology Dialysis Transplantation, 2004, 19, 141-149.	0.4	266
25	Gas sensing properties of thermally evaporated lamellar MoO3. Sensors and Actuators B: Chemical, 2010, 145, 13-19.	4.0	264
26	Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Analytical and Bioanalytical Chemistry, 2010, 396, 401-420.	1.9	262
27	Two-Dimensional Transition Metal Oxide and Chalcogenide-Based Photocatalysts. Nano-Micro Letters, 2018, 10, 23.	14.4	257
28	Atomically thin layers of MoS ₂ via a two step thermal evaporation–exfoliation method. Nanoscale, 2012, 4, 461-466.	2.8	254
29	Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. Journal of Materials Chemistry A, 2014, 2, 15683-15703.	5.2	253
30	Synthesis of nanometre-thick MoO ₃ sheets. Nanoscale, 2010, 2, 429-433.	2.8	250
31	Liquid Metal Marbles. Advanced Functional Materials, 2013, 23, 144-152.	7.8	249
32	Ion-Driven Photoluminescence Modulation of Quasi-Two-Dimensional MoS ₂ Nanoflakes for Applications in Biological Systems. Nano Letters, 2014, 14, 857-863.	4.5	245
33	A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nature Electronics, 2018, 1, 79-87.	13.1	240
34	Characterization of ZnO Nanobelt-Based Gas Sensor for \${m H}_{2}\$, \${m NO}_{2}\$, and Hydrocarbon Sensing. IEEE Sensors Journal, 2007, 7, 919-924.	2.4	225
35	Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nature Communications, 2017, 8, 14482.	5.8	219
36	Cytokines: From Clinical Significance to Quantification. Advanced Science, 2021, 8, e2004433.	5.6	216

#	Article	IF	CITATIONS
37	Synthesis of Atomically Thin WO ₃ Sheets from Hydrated Tungsten Trioxide. Chemistry of Materials, 2010, 22, 5660-5666.	3.2	215
38	Carbon Nanotube/Polyaniline Composite Nanofibers: Facile Synthesis and Chemosensors. Nano Letters, 2011, 11, 954-959.	4.5	215
39	A layered surface acoustic wave gas sensor based on a polyaniline/In2O3nanofibre composite. Nanotechnology, 2006, 17, 4488-4492.	1.3	213
40	Electrodeposited α- and β-Phase MoO ₃ Films and Investigation of Their Gasochromic Properties. Crystal Growth and Design, 2012, 12, 1865-1870.	1.4	208
41	Electrochemically induced actuation of liquid metal marbles. Nanoscale, 2013, 5, 5949.	2.8	205
42	Antibacterial Liquid Metals: Biofilm Treatment <i>via</i> Magnetic Activation. ACS Nano, 2020, 14, 802-817.	7.3	198
43	Electronic Tuning of 2D MoS ₂ through Surface Functionalization. Advanced Materials, 2015, 27, 6225-6229.	11.1	194
44	Investigation of Two-Solvent Grinding-Assisted Liquid Phase Exfoliation of Layered MoS ₂ . Chemistry of Materials, 2015, 27, 53-59.	3.2	194
45	Liquid Metal/Metal Oxide Frameworks. Advanced Functional Materials, 2014, 24, 3799-3807.	7.8	191
46	Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: Application for H2 gas sensing. Sensors and Actuators B: Chemical, 2014, 192, 196-204.	4.0	190
47	In Situ Raman Spectroscopy of H ₂ Gas Interaction with Layered MoO ₃ . Journal of Physical Chemistry C, 2011, 115, 10757-10763.	1.5	184
48	Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts. Sensors and Actuators B: Chemical, 2005, 108, 154-158.	4.0	182
49	Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nature Communications, 2019, 10, 865.	5.8	179
50	Diagnosis of iron deficiency anemia in renal failure patients during the post-erythropoietin era. American Journal of Kidney Diseases, 1995, 26, 292-299.	2.1	177
51	Microfluidics and Raman microscopy: current applications and future challenges. Chemical Society Reviews, 2013, 42, 5880.	18.7	177
52	Elevated Temperature Anodized Nb ₂ O ₅ : A Photoanode Material with Exceptionally Large Photoconversion Efficiencies. ACS Nano, 2012, 6, 4045-4053.	7.3	174
53	Liquid Metal Actuator for Inducing Chaotic Advection. Advanced Functional Materials, 2014, 24, 5851-5858.	7.8	173
54	Ingestible Sensors. ACS Sensors, 2017, 2, 468-483.	4.0	171

#	Article	IF	CITATIONS
55	Plasmon Resonances of Highly Doped Two-Dimensional MoS ₂ . Nano Letters, 2015, 15, 883-890.	4.5	167
56	Electrospun Granular Hollow SnO ₂ Nanofibers Hydrogen Gas Sensors Operating at Low Temperatures. Journal of Physical Chemistry C, 2014, 118, 3129-3139.	1.5	166
57	Highly active two dimensional α-MoO _{3â^²x} for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 24223-24231.	5.2	166
58	Synthesis of Nanostructured Tungsten Oxide Thin Films: A Simple, Controllable, Inexpensive, Aqueous Solâ~'Gel Method. Crystal Growth and Design, 2010, 10, 430-439.	1.4	164
59	The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale, 2012, 4, 5980.	2.8	164
60	Highâ€Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes. Advanced Functional Materials, 2016, 26, 91-100.	7.8	164
61	The Fascinating but Deceptive Ferritin: To Measure It or Not to Measure It in Chronic Kidney Disease?. Clinical Journal of the American Society of Nephrology: CJASN, 2006, 1, S9-S18.	2.2	162
62	Field Effect Biosensing Platform Based on 2D α-MoO ₃ . ACS Nano, 2013, 7, 9753-9760.	7.3	161
63	Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nature Electronics, 2020, 3, 51-58.	13.1	161
64	Platinum/Graphene Nanosheet/SiC Contacts and Their Application for Hydrogen Gas Sensing. Journal of Physical Chemistry C, 2010, 114, 13796-13801.	1.5	160
65	Ionic imbalance induced self-propulsion of liquid metals. Nature Communications, 2016, 7, 12402.	5.8	158
66	Association of anemia with outcomes in men with moderate and severe chronic kidney disease. Kidney International, 2006, 69, 560-564.	2.6	157
67	Interface chemistry of two-dimensional heterostructures – fundamentals to applications. Chemical Society Reviews, 2021, 50, 4684-4729.	18.7	152
68	Liquid metal batteries for future energy storage. Energy and Environmental Science, 2021, 14, 4177-4202.	15.6	149
69	Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants. Sensors and Actuators B: Chemical, 2003, 93, 431-434.	4.0	147
70	Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2. Sensors and Actuators B: Chemical, 2009, 137, 115-120.	4.0	147
71	Characterization of metal contacts for two-dimensional MoS2 nanoflakes. Applied Physics Letters, 2013, 103, .	1.5	144
72	Total Iron-Binding Capacity–Estimated Transferrin Correlates With the Nutritional Subjective Global Assessment in Hemodialysis Patients. American Journal of Kidney Diseases, 1998, 31, 263-272.	2.1	140

#	Article	IF	CITATIONS
73	Liquid Metal/Metal Oxide Frameworks with Incorporated Ga ₂ O ₃ for Photocatalysis. ACS Applied Materials & Interfaces, 2015, 7, 1943-1948.	4.0	138
74	Photochemically induced motion of liquid metal marbles. Applied Physics Letters, 2013, 103, .	1.5	133
75	Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sensors and Actuators A: Physical, 2007, 139, 53-57.	2.0	132
76	Considering the Effects of Microbiome and Diet on SARS-CoV-2 Infection: Nanotechnology Roles. ACS Nano, 2020, 14, 5179-5182.	7.3	131
77	Gallium Liquid Metal: The Devil's Elixir. Annual Review of Materials Research, 2021, 51, 381-408.	4.3	130
78	Selfâ€Limiting Galvanic Growth of MnO ₂ Monolayers on a Liquid Metal—Applied to Photocatalysis. Advanced Functional Materials, 2019, 29, 1901649.	7.8	129
79	The effect of crosslinking temperature on the permeability of PDMS membranes: Evidence of extraordinary CO2 and CH4 gas permeation. Separation and Purification Technology, 2014, 122, 96-104.	3.9	128
80	Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators. Nature Communications, 2020, 11, 3449.	5.8	128
81	p- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique. Sensors and Actuators B: Chemical, 2003, 93, 562-565.	4.0	127
82	Nanoporous Nb2O5 hydrogen gas sensor. Sensors and Actuators B: Chemical, 2013, 176, 149-156.	4.0	123
83	Intelligent Control of Surface Hydrophobicity. ChemPhysChem, 2007, 8, 2036-2050.	1.0	122
84	Wafer-Scale Synthesis of Semiconducting SnO Monolayers from Interfacial Oxide Layers of Metallic Liquid Tin. ACS Nano, 2017, 11, 10974-10983.	7.3	122
85	Polypyrrole nanofiber surface acoustic wave gas sensors. Sensors and Actuators B: Chemical, 2008, 134, 826-831.	4.0	119
86	2D WS ₂ /carbon dot hybrids with enhanced photocatalytic activity. Journal of Materials Chemistry A, 2016, 4, 13563-13571.	5.2	119
87	Nanostructured copper oxides as ethanol vapour sensors. Sensors and Actuators B: Chemical, 2013, 185, 620-627.	4.0	118
88	Liquidâ€Metal Microdroplets Formed Dynamically with Electrical Control of Size and Rate. Advanced Materials, 2016, 28, 604-609.	11.1	116
89	Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 733-747.	8.2	116
90	High-Temperature Anodized WO ₃ Nanoplatelet Films for Photosensitive Devices. Langmuir, 2009, 25, 9545-9551.	1.6	111

#	Article	IF	CITATIONS
91	Exfoliation Solvent Dependent Plasmon Resonances in Two-Dimensional Sub-Stoichiometric Molybdenum Oxide Nanoflakes. ACS Applied Materials & Interfaces, 2016, 8, 3482-3493.	4.0	111
92	Sonicationâ€Assisted Synthesis of Gallium Oxide Suspensions Featuring Trap State Absorption: Test of Photochemistry. Advanced Functional Materials, 2017, 27, 1702295.	7.8	110
93	Sol–gel prepared MoO3–WO3 thin-films for O2 gas sensing. Sensors and Actuators B: Chemical, 2001, 77, 478-483.	4.0	109
94	Atomically thin two-dimensional metal oxide nanosheets and their heterostructures for energy storage Materials, 2019, 16, 455-480.	9.5	109
95	High-κ perovskite membranes as insulators for two-dimensional transistors. Nature, 2022, 605, 262-267.	13.7	109
96	Printing two-dimensional gallium phosphate out of liquid metal. Nature Communications, 2018, 9, 3618.	5.8	107
97	Wafer-Sized Ultrathin Gallium and Indium Nitride Nanosheets through the Ammonolysis of Liquid Metal Derived Oxides. Journal of the American Chemical Society, 2019, 141, 104-108.	6.6	107
98	Liquid Metals in Catalysis for Energy Applications. Joule, 2020, 4, 2290-2321.	11.7	106
99	Measuring Methane Production from Ruminants. Trends in Biotechnology, 2016, 34, 26-35.	4.9	105
100	Degenerately Hydrogen Doped Molybdenum Oxide Nanodisks for Ultrasensitive Plasmonic Biosensing. Advanced Functional Materials, 2018, 28, 1706006.	7.8	105
101	Unique surface patterns emerging during solidification of liquid metal alloys. Nature Nanotechnology, 2021, 16, 431-439.	15.6	104
102	Human intestinal gas measurement systems: in vitro fermentation and gas capsules. Trends in Biotechnology, 2015, 33, 208-213.	4.9	102
103	Porous Eleocharis@MnPE Layered Hybrid for Synergistic Adsorption and Catalytic Biodegradation of Toxic Azo Dyes from Industrial Wastewater. Environmental Science & Technology, 2019, 53, 2161-2170.	4.6	102
104	Liquid Metal Droplet and Graphene Coâ€Fillers for Electrically Conductive Flexible Composites. Small, 2020, 16, e1903753.	5.2	102
105	A Gallium-Based Magnetocaloric Liquid Metal Ferrofluid. Nano Letters, 2017, 17, 7831-7838.	4.5	101
106	Nanorod based Schottky contact gas sensors in reversed bias condition. Nanotechnology, 2010, 21, 265502.	1.3	99
107	CNT/PDMS composite membranes for H2 and CH4 gas separation. International Journal of Hydrogen Energy, 2013, 38, 10494-10501.	3.8	97
108	Decoration of TiO ₂ Nanotubes with Metal Nanoparticles Using Polyoxometalate as a UV-Switchable Reducing Agent for Enhanced Visible and Solar Light Photocatalysis. Langmuir, 2012, 28, 14470-14475.	1.6	92

#	Article	IF	CITATIONS
109	Aqueous synthesis of interconnected ZnO nanowires using spray pyrolysis deposited seed layers. Materials Letters, 2010, 64, 291-294.	1.3	91
110	Acoustically-Driven Trion and Exciton Modulation in Piezoelectric Two-Dimensional MoS ₂ . Nano Letters, 2016, 16, 849-855.	4.5	91
111	Hydrogen gas sensor based on highly ordered polyaniline nanofibersâ^†. Sensors and Actuators B: Chemical, 2009, 137, 529-532.	4.0	90
112	In situ nanoindentation: Probing nanoscale multifunctionality. Progress in Materials Science, 2013, 58, 1-29.	16.0	90
113	Anodization of Ti Thin Film Deposited on ITO. Langmuir, 2009, 25, 509-514.	1.6	89
114	High Performance Electrochromic Devices Based on Anodized Nanoporous Nb ₂ O ₅ . Journal of Physical Chemistry C, 2014, 118, 476-481.	1.5	88
115	Layered SAW gas sensor with single-walled carbon nanotube-based nanocomposite coating. Sensors and Actuators B: Chemical, 2007, 127, 168-178.	4.0	86
116	Gallium-Based Liquid Metal Particles for Therapeutics. Trends in Biotechnology, 2021, 39, 624-640.	4.9	85
117	Polyaniline Nanofiber Based Surface Acoustic Wave Gas Sensors—Effect of Nanofiber Diameter on \$hbox{H}_{2}\$ Response. IEEE Sensors Journal, 2007, 7, 213-218.	2.4	84
118	A ZnO nanorod based layered ZnO/64° YX LiNbO3 SAW hydrogen gas sensor. Thin Solid Films, 2007, 515, 8705-8708.	0.8	84
119	Polyphenolâ€Induced Adhesive Liquid Metal Inks for Substrateâ€Independent Direct Pen Writing. Advanced Functional Materials, 2021, 31, 2007336.	7.8	84
120	Gold Nanoparticle-Decorated Keggin Ions/TiO ₂ Photococatalyst for Improved Solar Light Photocatalysis. Langmuir, 2011, 27, 6661-6667.	1.6	83
121	Evidence for High-Efficiency Exciton Dissociation at Polymer/Single-Walled Carbon Nanotube Interfaces in Planar Nano-heterojunction Photovoltaics. ACS Nano, 2010, 4, 6251-6259.	7.3	82
122	Quasi physisorptive two dimensional tungsten oxide nanosheets with extraordinary sensitivity and selectivity to NO ₂ . Nanoscale, 2017, 9, 19162-19175.	2.8	81
123	A polyaniline/WO3 nanofiber composite-based ZnO/64° YX LiNbO3 SAW hydrogen gas sensor. Synthetic Metals, 2008, 158, 29-32.	2.1	80
124	PDMS nanocomposites for heat transfer enhancement in microfluidic platforms. Lab on A Chip, 2014, 14, 3419-3426.	3.1	78
125	Functional Liquid Metal Nanoparticles Produced by Liquidâ€Based Nebulization. Advanced Materials Technologies, 2019, 4, 1800420.	3.0	78
126	Liquid metals and their hybrids as stimulus–responsive smart materials. Materials Today, 2020, 34, 92-114.	8.3	78

#	Article	IF	CITATIONS
127	Transition from <i>n</i> - to <i>p</i> -Type of Spray Pyrolysis Deposited Cu Doped ZnO Thin Films for NO ₂ Sensing. Sensor Letters, 2009, 7, 621-628.	0.4	77
128	Reversed bias Pt/nanostructured ZnO Schottky diode with enhanced electric field for hydrogen sensingâ~†. Sensors and Actuators B: Chemical, 2010, 146, 507-512.	4.0	77
129	In situ Raman spectroscopy of H2 interaction with WO3 films. Physical Chemistry Chemical Physics, 2011, 13, 7330.	1.3	77
130	A vein-like nanoporous network of Nb2O5 with a higher lithium intercalation discharge cut-off voltage. Journal of Materials Chemistry A, 2013, 1, 11019.	5.2	77
131	Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform. Nanoscale, 2014, 6, 12780-12791.	2.8	77
132	Electronic Skins Based on Liquid Metals. Proceedings of the IEEE, 2019, 107, 2168-2184.	16.4	77
133	Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy. Nature Communications, 2019, 10, 4645.	5.8	76
134	Electrowetting of Superhydrophobic ZnO Nanorods. Langmuir, 2008, 24, 5091-5098.	1.6	75
135	ZnO based thermopower wave sources. Chemical Communications, 2012, 48, 7462.	2.2	75
136	Nucleation and Growth of Polyaniline Nanofibers onto Liquid Metal Nanoparticles. Chemistry of Materials, 2020, 32, 4808-4819.	3.2	75
137	High-mobility p-type semiconducting two-dimensional Î ² -TeO2. Nature Electronics, 2021, 4, 277-283.	13.1	75
138	Enhancing the current density of electrodeposited ZnO–Cu2O solar cells by engineering their heterointerfaces. Journal of Materials Chemistry, 2012, 22, 21767.	6.7	74
139	Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sensors, 2020, 5, 3739-3769.	4.0	73
140	Magnetic and Conductive Liquid Metal Gels. ACS Applied Materials & Interfaces, 2020, 12, 20119-20128.	4.0	73
141	A novel Love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications. Sensors and Actuators A: Physical, 2002, 100, 135-143.	2.0	72
142	Optofluidics incorporating actively controlled micro- and nano-particles. Biomicrofluidics, 2012, 6, 031501.	1.2	72
143	Amorphous MoS _{<i>x</i>} -Coated TiO ₂ Nanotube Arrays for Enhanced Electrocatalytic Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2018, 122, 12589-12597.	1.5	72
144	Atomically Thin Ga ₂ S ₃ from Skin of Liquid Metals for Electrical, Optical, and Sensing Applications. ACS Applied Nano Materials, 2019, 2, 4665-4672.	2.4	72

#	Article	IF	CITATIONS
145	Sb2Te3 and Bi2Te3 based thermopower wave sources. Energy and Environmental Science, 2011, 4, 3558.	15.6	71
146	MnO ₂ -Based Thermopower Wave Sources with Exceptionally Large Output Voltages. Journal of Physical Chemistry C, 2013, 117, 9137-9142.	1.5	71
147	Anodized nanoporous WO3Schottky contact structures for hydrogen and ethanol sensing. Journal of Materials Chemistry A, 2015, 3, 7994-8001.	5.2	71
148	Enhanced Gas Permeation through Graphene Nanocomposites. Journal of Physical Chemistry C, 2015, 119, 13700-13712.	1.5	70
149	Ordered intracrystalline pores in planar molybdenum oxide for enhanced alkaline hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 257-268.	5.2	70
150	Nanotechnology-Enabled Sensors. , 2008, , .		69
151	Nanoporous WO3 from anodized RF sputtered tungsten thin films. Electrochemistry Communications, 2009, 11, 768-771.	2.3	69
152	Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes. NPG Asia Materials, 2013, 5, e62-e62.	3.8	67
153	Green Synthesis of Lowâ€Dimensional Aluminum Oxide Hydroxide and Oxide Using Liquid Metal Reaction Media: Ultrahigh Flux Membranes. Advanced Functional Materials, 2018, 28, 1804057.	7.8	67
154	Formation of nanoporous titanium oxide films on silicon substrates using an anodization process. Nanotechnology, 2006, 17, 808-814.	1.3	66
155	Conductometric Hydrogen Gas Sensor Based on Polypyrrole Nanofibers. IEEE Sensors Journal, 2008, 8, 365-370.	2.4	66
156	Optical Gas Sensing Properties of Nanoporous Nb ₂ O ₅ Films. ACS Applied Materials & Interfaces, 2015, 7, 4751-4758.	4.0	66
157	Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors. Advanced Materials, 2020, 32, e2004247.	11.1	66
158	Nanoencapsulation for Probiotic Delivery. ACS Nano, 2021, 15, 18653-18660.	7.3	64
159	Liquidâ€Metalâ€Templated Synthesis of 2D Graphitic Materials at Room Temperature. Advanced Materials, 2020, 32, e2001997.	11.1	63
160	Effective Separation of CO ₂ Using Metalâ€Incorporated rGO Membranes. Advanced Materials, 2020, 32, e1907580.	11.1	63
161	Dielectrophoretic manipulation and separation of microparticles using curved microelectrodes. Electrophoresis, 2009, 30, 3707-3717.	1.3	62
162	Excitation dependent bidirectional electron transfer in phthalocyanine-functionalised MoS ₂ nanosheets. Nanoscale, 2016, 8, 16276-16283.	2.8	62

#	Article	IF	CITATIONS
163	Active Control of Silver Nanoparticles Spacing Using Dielectrophoresis for Surface-Enhanced Raman Scattering. Analytical Chemistry, 2012, 84, 4029-4035.	3.2	61
164	Electrochromic properties of TiO2 nanotubes coated with electrodeposited MoO3. Nanoscale, 2013, 5, 10353.	2.8	61
165	Highly ordered anodized Nb2O5 nanochannels for dye-sensitized solar cells. Electrochemistry Communications, 2014, 40, 20-23.	2.3	61
166	Intercalated 2D MoS ₂ Utilizing a Simulated Sun Assisted Process: Reducing the HER Overpotential. Journal of Physical Chemistry C, 2016, 120, 2447-2455.	1.5	61
167	Low-temperature liquid platinum catalyst. Nature Chemistry, 2022, 14, 935-941.	6.6	61
168	Fabrication of nanostructured TiO2 by anodization: A comparison between electrolytes and substrates. Sensors and Actuators B: Chemical, 2008, 130, 25-31.	4.0	60
169	Reverse biased Pt/nanostructured MoO3/SiC Schottky diode based hydrogen gas sensors. Applied Physics Letters, 2009, 94, .	1.5	60
170	Layered SAW gas sensor based on CSA synthesized polyaniline nanofiber on AlN on 64° YX LiNbO3 for H2 sensing. Sensors and Actuators B: Chemical, 2009, 138, 85-89.	4.0	60
171	NanoDYNAMITE. IEEE Spectrum, 2011, 48, 44-49.	0.5	60
172	2D MoS ₂ PDMS Nanocomposites for NO ₂ Separation. Small, 2015, 11, 5035-5040.	5.2	59
173	Layered SAW hydrogen sensor with modified tungsten trioxide selective layer. Sensors and Actuators B: Chemical, 2005, 108, 553-557.	4.0	58
174	Oscillatory Thermopower Waves Based on Bi ₂ Te ₃ Films. Advanced Functional Materials, 2011, 21, 2072-2079.	7.8	58
175	Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property. Electrochemistry Communications, 2013, 27, 128-132.	2.3	58
176	Two solvent grinding sonication method for the synthesis of two-dimensional tungsten disulphide flakes. Chemical Communications, 2015, 51, 3770-3773.	2.2	58
177	Liquidâ€Metalâ€Enabled Mechanicalâ€Energyâ€Induced CO ₂ Conversion. Advanced Materials, 2022 34, e2105789.	' 11.1	58
178	Novel Love mode surface acoustic wave based immunosensors. Sensors and Actuators B: Chemical, 2003, 91, 143-147.	4.0	57
179	Highly sensitive layered ZnO/LiNbO3 SAW device with InOx selective layer for NO2 and H2 gas sensing. Sensors and Actuators B: Chemical, 2005, 111-112, 207-212.	4.0	57
180	Surface Water Dependent Properties of Sulfur-Rich Molybdenum Sulfides: Electrolyteless Gas Phase Water Splitting. ACS Nano, 2017, 11, 6782-6794.	7.3	57

#	Article	IF	CITATIONS
181	A novel wireless gas sensor based on LTCC technology. Sensors and Actuators B: Chemical, 2017, 239, 711-717.	4.0	57
182	Numerical calculation of SAW sensitivity: application to ZnO/LiTaO3 transducers. Sensors and Actuators A: Physical, 2004, 115, 456-461.	2.0	56
183	Layered WO3/ZnO/36° LiTaO3 SAW gas sensor sensitive towards ethanol vapour and humidity. Sensors and Actuators B: Chemical, 2006, 117, 442-450.	4.0	56
184	Dynamic Analysis of Drug-Induced Cytotoxicity Using Chip-Based Dielectrophoretic Cell Immobilization Technology. Analytical Chemistry, 2011, 83, 2133-2144.	3.2	56
185	Nanocomposite carbon-PDMS membranes for gas separation. Sensors and Actuators B: Chemical, 2012, 161, 982-988.	4.0	56
186	Intestinal Gas Capsules: A Proof-of-Concept Demonstration. Gastroenterology, 2016, 150, 37-39.	0.6	56
187	Nb2O5 Schottky based ethanol vapour sensors: Effect of metallic catalysts. Sensors and Actuators B: Chemical, 2014, 202, 74-82.	4.0	55
188	H2 sensing performance of optical fiber coated with nano-platelet WO3 film. Sensors and Actuators B: Chemical, 2012, 166-167, 1-6.	4.0	54
189	Two-step synthesis of luminescent MoS ₂ –ZnS hybrid quantum dots. Nanoscale, 2015, 7, 16763-16772.	2.8	54
190	<i>In Vivo</i> and <i>In Vitro</i> Monitoring of Amyloid Aggregation via BSA@FGQDs Multimodal Probe. ACS Sensors, 2019, 4, 200-210.	4.0	54
191	Uniformly Dispersed Ptâ^'Ni Nanoparticles on Nitrogen-Doped Carbon Nanotubes for Hydrogen Sensing. Journal of Physical Chemistry C, 2010, 114, 238-242.	1.5	53
192	Catalytic Metal Foam by Chemical Melting and Sintering of Liquid Metal Nanoparticles. Advanced Functional Materials, 2020, 30, 1907879.	7.8	53
193	In situ SERS probing of nano-silver coated individual yeast cells. Biosensors and Bioelectronics, 2013, 49, 536-541.	5.3	52
194	Engineering electrodeposited ZnO films and their memristive switching performance. Physical Chemistry Chemical Physics, 2013, 15, 10376.	1.3	52
195	Bi ₂ O ₃ monolayers from elemental liquid bismuth. Nanoscale, 2018, 10, 15615-15623.	2.8	52
196	Pulsing Liquid Alloys for Nanomaterials Synthesis. ACS Nano, 2020, 14, 14070-14079.	7.3	52
197	Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing. ACS Nano, 2021, 15, 19661-19671.	7.3	52
198	Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles. Microfluidics and Nanofluidics, 2009, 7, 633-645.	1.0	51

#	Article	IF	CITATIONS
199	Nanoporous TiO2 thin film based conductometric H2 sensor. Thin Solid Films, 2009, 518, 1294-1298.	0.8	51
200	Dielectrophoretic-activated cell sorter based on curved microelectrodes. Microfluidics and Nanofluidics, 2010, 9, 411-426.	1.0	51
201	Dielectrophoresis–Raman spectroscopy system for analysing suspended nanoparticles. Lab on A Chip, 2011, 11, 921.	3.1	51
202	Low-Temperature Fabrication of Alkali Metal–Organic Charge Transfer Complexes on Cotton Textile for Optoelectronics and Gas Sensing. Langmuir, 2015, 31, 1581-1587.	1.6	51
203	Uncovering Atomicâ€Scale Stability and Reactivity in Engineered Zinc Oxide Electrocatalysts for Controllable Syngas Production. Advanced Energy Materials, 2020, 10, 2001381.	10.2	51
204	Electrospun liquid metal/PVDF-HFP nanofiber membranes with exceptional triboelectric performance. Nano Energy, 2022, 92, 106713.	8.2	49
205	Emerging Role of Liquid Metals in Sensing. ACS Sensors, 2022, 7, 386-408.	4.0	48
206	On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis. Microfluidics and Nanofluidics, 2012, 12, 597-606.	1.0	47
207	Enhanced Coloration Efficiency for Electrochromic Devices based on Anodized Nb ₂ O ₅ /Electrodeposited MoO ₃ Binary Systems. Journal of Physical Chemistry C, 2014, 118, 10867-10873.	1.5	47
208	Recent developments of hybrid piezo–triboelectric nanogenerators for flexible sensors and energy harvesters. Nanoscale Advances, 2021, 3, 5465-5486.	2.2	47
209	Applications of liquid metals in nanotechnology. Nanoscale Horizons, 2022, 7, 141-167.	4.1	47
210	Nanostructured WO3 films using high temperature anodization. Sensors and Actuators B: Chemical, 2009, 142, 230-235.	4.0	46
211	The safety and sensitivity of a telemetric capsule to monitor gastrointestinal hydrogen production inÂvivo in healthy subjects: a pilot trial comparison to concurrent breath analysis. Alimentary Pharmacology and Therapeutics, 2018, 48, 646-654.	1.9	46
212	Liquid metals for tuning gas sensitive layers. Journal of Materials Chemistry C, 2019, 7, 6375-6382.	2.7	46
213	Bi–Sn Catalytic Foam Governed by Nanometallurgy of Liquid Metals. Nano Letters, 2020, 20, 4403-4409.	4.5	46
214	A multi-functional bubble-based microfluidic system. Scientific Reports, 2015, 5, 9942.	1.6	45
215	Two dimensional PbMoO4: A photocatalytic material derived from a naturally non-layered crystal. Nano Energy, 2018, 49, 237-246.	8.2	45
216	Intermetallic wetting enabled high resolution liquid metal patterning for 3D and flexible electronics. Journal of Materials Chemistry C, 2022, 10, 921-931.	2.7	45

#	Article	IF	CITATIONS
217	Generation of catalytically active materials from a liquid metal precursor. Chemical Communications, 2015, 51, 14026-14029.	2.2	44
218	Peculiar piezoelectricity of atomically thin planar structures. Nanoscale, 2020, 12, 2875-2901.	2.8	44
219	Maximum piezoelectricity in a few unit-cell thick planar ZnO – A liquid metal-based synthesis approach. Materials Today, 2021, 44, 69-77.	8.3	44
220	Nanostructured SnO ₂ films prepared from evaporated Sn and their application as gas sensors. Nanotechnology, 2008, 19, 125504.	1.3	43
221	Liquid metal core–shell structures functionalised <i>via</i> mechanical agitation: the example of Field's metal. Journal of Materials Chemistry A, 2019, 7, 17876-17887.	5.2	42
222	Influence of Electric Field on SERS: Frequency Effects, Intensity Changes, and Susceptible Bonds. Journal of the American Chemical Society, 2012, 134, 4646-4653.	6.6	41
223	Selfâ€Deposition of 2D Molybdenum Sulfides on Liquid Metals. Advanced Functional Materials, 2021, 31, 2005866.	7.8	41
224	Fast formation of thick and transparent titania nanotubular films from sputtered Ti. Electrochemistry Communications, 2009, 11, 1308-1311.	2.3	40
225	Wavefront Velocity Oscillations of Carbon-Nanotube-Guided Thermopower Waves: Nanoscale Alternating Current Sources. ACS Nano, 2011, 5, 367-375.	7.3	40
226	3-D nanorod arrays of metal–organic KTCNQ semiconductor on textiles for flexible organic electronics. RSC Advances, 2013, 3, 17654.	1.7	40
227	P-type Charge Transport and Selective Gas Sensing of All-Inorganic Perovskite Nanocrystals. , 2020, 2, 1368-1374.		40
228	A polyaniline nanofibre electrode and its application in a self-powered photoelectrochromic cell. Nanotechnology, 2007, 18, 015201.	1.3	39
229	Synthesis and electrochemical properties of template-based polyaniline nanowires and template-free nanofibril arrays: Two potential nanostructures for gas sensors. Sensors and Actuators B: Chemical, 2009, 136, 1-7.	4.0	39
230	Carrier Mobility of Single-Walled Carbon Nanotube-Reinforced Polyaniline Nanofibers. Journal of Physical Chemistry C, 2011, 115, 16187-16192.	1.5	38
231	Interaction of hydrogen with ZnO nanopowders—evidence of hydroxyl group formation. Nanotechnology, 2012, 23, 015705.	1.3	38
232	Microfluidic Platforms for the Investigation of Intercellular Signalling Mechanisms. Small, 2014, 10, 4810-4826.	5.2	38
233	Controlled Electrochemical Deformation of Liquid-Phase Gallium. ACS Applied Materials & Interfaces, 2016, 8, 3833-3839.	4.0	38
234	Dynamic Temperature Control System for the Optimized Production of Liquid Metal Nanoparticles. ACS Applied Nano Materials, 2020, 3, 6905-6914.	2.4	38

#	Article	IF	CITATIONS
235	Doping Process of 2D Materials Based on the Selective Migration of Dopants to the Interface of Liquid Metals. Advanced Materials, 2021, 33, e2104793.	11.1	38
236	A hydrogen/methane sensor based on niobium tungsten oxide nanorods synthesised by hydrothermal method. Sensors and Actuators B: Chemical, 2013, 184, 118-129.	4.0	37
237	Optical response of WO3 nanostructured thin films sputtered on different transparent substrates towards hydrogen of low concentration. Sensors and Actuators B: Chemical, 2013, 177, 981-988.	4.0	37
238	Silver nanoparticle/PDMS nanocomposite catalytic membranes for H 2 S gas removal. Journal of Membrane Science, 2014, 470, 346-355.	4.1	37
239	A spectrally splitting photovoltaic-thermal hybrid receiver utilising direct absorption and wave interference light filtering. Solar Energy Materials and Solar Cells, 2015, 139, 71-80.	3.0	37
240	Self-tunable ultrathin carbon nanocups as the electrode material of sodium-ion batteries with unprecedented capacity and stability. Chemical Engineering Journal, 2019, 364, 578-588.	6.6	37
241	Improved antifouling resistance of electrochemical water quality sensors based on Cu2O-doped RuO2 sensing electrode. Progress in Organic Coatings, 2011, 70, 67-73.	1.9	36
242	Development of antifouling of electrochemical solid-state dissolved oxygen sensors based on nanostructured Cu0.4Ru3.4O7+ RuO2 sensing electrodes. Electrochimica Acta, 2012, 73, 105-111.	2.6	35
243	Size based separation of microparticles using a dielectrophoretic activated system. Journal of Applied Physics, 2010, 108, 034904.	1.1	34
244	Exploring Electrochemical Extrusion of Wires from Liquid Metals. ACS Applied Materials & Interfaces, 2020, 12, 31010-31020.	4.0	34
245	Liquid Metal-Based Route for Synthesizing and Tuning Gas-Sensing Elements. ACS Sensors, 2020, 5, 1177-1189.	4.0	34
246	Cellâ€Mediated Biointerfacial Phenolic Assembly for Probiotic Nano Encapsulation. Advanced Functional Materials, 2022, 32, .	7.8	34
247	Electrospun PVP fibers and gas sensing properties of PVP/36° YX LiTaO3 SAW device. Sensors and Actuators B: Chemical, 2010, 145, 674-679.	4.0	33
248	Laser exposure induced alteration of WS ₂ monolayers in the presence of ambient moisture. 2D Materials, 2018, 5, 015013.	2.0	33
249	A Layered Surface Acoustic Wave ZnO/LiTaO ₃ Structure with a WO ₃ Selective Layer for Hydrogen Sensing. Sensor Letters, 2003, 1, 33-36.	0.4	33
250	Gallium Nanodroplets are Anti-Inflammatory without Interfering with Iron Homeostasis. ACS Nano, 2022, 16, 8891-8903.	7.3	33
251	Structural and gas-sensing properties of CuO–Cu Fe3â^'O4 nanostructured thin films. Sensors and Actuators B: Chemical, 2011, 153, 117-124.	4.0	32
252	Light driven growth of silver nanoplatelets on 2D MoS ₂ nanosheet templates. Journal of Materials Chemistry C, 2015, 3, 4771-4778.	2.7	32

#	Article	IF	CITATIONS
253	Ultrafast Acoustofluidic Exfoliation of Stratified Crystals. Advanced Materials, 2018, 30, e1704756.	11.1	32
254	Callium nitride formation in liquid metal sonication. Journal of Materials Chemistry C, 2020, 8, 16593-16602.	2.7	32
255	Photolithography–enabled direct patterning of liquid metals. Journal of Materials Chemistry C, 2020, 8, 7805-7811.	2.7	32
256	Low Melting Temperature Liquid Metals and Their Impacts on Physical Chemistry. Accounts of Materials Research, 2021, 2, 577-580.	5.9	32
257	A 3-dimensional finite element approach for simulating acoustic wave propagation in layered SAW devices. , 0, , .		31
258	Exfoliation of Quasi-Stratified Bi ₂ S ₃ Crystals into Micron-Scale Ultrathin Corrugated Nanosheets. Chemistry of Materials, 2016, 28, 8942-8950.	3.2	31
259	Liquid Phase Acoustic Wave Exfoliation of Layered MoS ₂ : Critical Impact of Electric Field in Efficiency. Chemistry of Materials, 2018, 30, 5593-5601.	3.2	31
260	Coordination Polymer to Atomically Thin, Holey, Metalâ€Oxide Nanosheets for Tuning Band Alignment. Advanced Materials, 2019, 31, e1905288.	11.1	31
261	Broad-spectrum treatment of bacterial biofilms using magneto-responsive liquid metal particles. Journal of Materials Chemistry B, 2020, 8, 10776-10787.	2.9	31
262	Exfoliation Behavior of van der Waals Strings: Case Study of Bi ₂ S ₃ . ACS Applied Materials & Interfaces, 2018, 10, 42603-42611.	4.0	30
263	Piezotronic materials and large-scale piezotronics array devices. MRS Bulletin, 2018, 43, 936-940.	1.7	30
264	Low dimensional materials for glucose sensing. Nanoscale, 2021, 13, 11017-11040.	2.8	30
265	Comparison study of conductometric, optical and SAW gas sensors based on porous sol–gel silica films doped with NiO and Au nanocrystals. Sensors and Actuators B: Chemical, 2010, 143, 567-573.	4.0	29
266	Potential of in vivo real-time gastric gas profiling: a pilot evaluation of heat-stress and modulating dietary cinnamon effect in an animal model. Scientific Reports, 2016, 6, 33387.	1.6	29
267	Liquid metal dispersion by self-assembly of natural phenolics. Chemical Communications, 2019, 55, 11291-11294.	2.2	29
268	Ultra-thin lead oxide piezoelectric layers for reduced environmental contamination using a liquid metal-based process. Journal of Materials Chemistry A, 2020, 8, 19434-19443.	5.2	29
269	QCM based mercury vapor sensor modified with polypyrrole supported palladium. Sensors and Actuators B: Chemical, 2011, 160, 616-622.	4.0	28
270	Reduced impurity-driven defect states in anodized nanoporous Nb2O5: the possibility of improving performance of photoanodes. Chemical Communications, 2013, 49, 6349.	2.2	28

#	Article	IF	CITATIONS
271	Silane: A new linker for chromophores in dye-sensitised solar cells. Polyhedron, 2013, 52, 719-732.	1.0	28
272	Calliumâ€Based Liquid Metal Reaction Media for Interfacial Precipitation of Bismuth Nanomaterials with Controlled Phases and Morphologies. Advanced Functional Materials, 2022, 32, .	7.8	28
273	Hydrogen gas sensing properties of Pt/Ta2O5 Schottky diodes based on Si and SiC substrates. Sensors and Actuators A: Physical, 2011, 172, 9-14.	2.0	27
274	Improving the hydrogen gas sensing performance of Pt/MoO3 nanoplatelets using a nano thick layer of La2O3. Sensors and Actuators B: Chemical, 2013, 187, 267-273.	4.0	27
275	Evolution of 2D tin oxides on the surface of molten tin. Chemical Communications, 2018, 54, 2102-2105.	2.2	27
276	Liquid metal-supported synthesis of cupric oxide. Journal of Materials Chemistry C, 2020, 8, 1656-1665.	2.7	27
277	Twoâ€Step Synthesis of Largeâ€Area 2D Bi ₂ S ₃ Nanosheets Featuring High Inâ€Plane Anisotropy. Advanced Materials Interfaces, 2020, 7, 2001131.	1.9	27
278	Illumination-Induced Phase Segregation and Suppressed Solubility Limit in Br-Rich Mixed-Halide Inorganic Perovskites. ACS Applied Materials & Interfaces, 2020, 12, 38376-38385.	4.0	27
279	Polydopamine Shell as a Ga ³⁺ Reservoir for Triggering Gallium–Indium Phase Separation in Eutectic Gallium–Indium Nanoalloys. ACS Nano, 2021, 15, 16839-16850.	7.3	27
280	Nontraumatic bilateral rupture of patellar tendons in a diabetic dialysis patients with secondary hyperparathyroidism. Nephrology Dialysis Transplantation, 1997, 12, 1988-1990.	0.4	26
281	Synthesis of the nanostructured WO3 via anodization at elevated temperature for H2 sensing applications. Procedia Engineering, 2011, 25, 247-251.	1.2	26
282	Influence of thickness of sub-micron Cu2O-doped RuO2 electrode on sensing performance of planar electrochemical pH sensors. Materials Letters, 2012, 75, 165-168.	1.3	26
283	Alkali ratio control for lead-free piezoelectric thin films utilizing elemental diffusivities in RF plasma. CrystEngComm, 2013, 15, 7222.	1.3	26
284	Laserâ€Induced Dewetting for Precise Local Generation ofÂAu Nanostructures for Tunable Solar Absorption. Advanced Optical Materials, 2016, 4, 1247-1254.	3.6	26
285	Liquid Metal-Triggered Assembly of Phenolic Nanocoatings with Antioxidant and Antibacterial Properties. ACS Applied Nano Materials, 2021, 4, 2987-2998.	2.4	26
286	Enhancement of electric field properties of Pt/nanoplatelet MoO ₃ /SiC Schottky diode. Journal Physics D: Applied Physics, 2010, 43, 025103.	1.3	25
287	Influence of semiconducting properties of nanoparticle coating on the electrochemical actuation of liquid metal marble. Applied Physics Letters, 2014, 105, .	1.5	25
288	Telecommunications and Data Processing in Flexible Electronic Systems. Advanced Materials Technologies, 2020, 5, .	3.0	25

#	Article	IF	CITATIONS
289	Microbiome modulation as a novel therapeutic approach in chronic kidney disease. Current Opinion in Nephrology and Hypertension, 2021, 30, 75-84.	1.0	25
290	Particle trapping using dielectrophoretically patterned carbon nanotubes. Electrophoresis, 2010, 31, 1366-1375.	1.3	24
291	Reductive exfoliation of substoichiometric MoS ₂ bilayers using hydrazine salts. Nanoscale, 2016, 8, 15252-15261.	2.8	24
292	Postâ€Transition Metal Electrodes for Sensing Heavy Metal Ions by Stripping Voltammetry. Advanced Materials Technologies, 2022, 7, 2100760.	3.0	24
293	High- <i>k</i> 2D Sb ₂ O ₃ Made Using a Substrate-Independent and Low-Temperature Liquid-Metal-Based Process. ACS Nano, 2021, 15, 16067-16075.	7.3	24
294	Soft Liquid Metal Infused Conductive Sponges. Advanced Materials Technologies, 2022, 7, .	3.0	24
295	SAW-based gas sensors with rf sputtered InOx and PECVD SiNx films: Response to H2 and O3 gases. Sensors and Actuators B: Chemical, 2006, 118, 362-367.	4.0	23
296	Nitrogen dioxide gas sensors based on titanium dioxide thin films deposited on langasite. Thin Solid Films, 2007, 515, 8738-8743.	0.8	23
297	Interfacing Cell-Based Assays in Environmental Scanning Electron Microscopy Using Dielectrophoresis. Analytical Chemistry, 2011, 83, 3217-3221.	3.2	23
298	Modulation of colonic hydrogen sulfide production by diet and mesalazine utilizing a novel gas-profiling technology. Gut Microbes, 2018, 9, 1-13.	4.3	23
299	Comparison of layered based SAW sensors. Sensors and Actuators B: Chemical, 2003, 91, 303-308.	4.0	22
300	Novel tuneable optical elements based on nanoparticle suspensions in microfluidics. Electrophoresis, 2010, 31, 1071-1079.	1.3	22
301	Thermal analysis of nanofluids in microfluidics using an infrared camera. Lab on A Chip, 2012, 12, 2520.	3.1	22
302	Bluetooth Signal Attenuation Analysis in Human Body Tissue Analogues. IEEE Access, 2021, 9, 85144-85150.	2.6	22
303	Facile, size-controlled deposition of highly dispersed gold nanoparticles on nitrogen carbon nanotubes for hydrogen sensing. Sensors and Actuators B: Chemical, 2011, 160, 1034-1042.	4.0	21
304	Near-Field Excited Archimedean-like Tiling Patterns in Phonon-Polaritonic Crystals. ACS Nano, 2021, 15, 9134-9142.	7.3	21
305	Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenching. Cell Reports Physical Science, 2021, 2, 100511.	2.8	21
306	Optical Hydrogen Sensing Properties of Nanostructured Pd/MoO3 Films. Sensor Letters, 2011, 9, 16-20.	0.4	20

#	Article	IF	CITATIONS
307	Sonication synthesis of micro-sized silver nanoparticle/oleic acid liquid marbles: A novel SERS sensing platform. Sensors and Actuators B: Chemical, 2016, 223, 52-58.	4.0	20
308	Liquid metal enabled continuous flow reactor: A proof-of-concept. Matter, 2021, 4, 4022-4041.	5.0	20
309	Modifying Dielectrophoretic Response of Nonviable Yeast Cells by Ionic Surfactant Treatment. Analytical Chemistry, 2013, 85, 6364-6371.	3.2	19
310	Dynamic Nanofin Heat Sinks. Advanced Energy Materials, 2014, 4, 1300537.	10.2	19
311	Liquid Exfoliation of Layered Transition Metal Dichalcogenides for Biological Applications. Current Protocols in Chemical Biology, 2016, 8, 97-108.	1.7	19
312	A Hydrogen Gas Sensor Based on Pt/Nanostructured WO3/SiC Schottky Diode. Sensor Letters, 2011, 9, 11-15.	0.4	19
313	Liquid-Metal-Assisted Deposition and Patterning of Molybdenum Dioxide at Low Temperature. ACS Applied Materials & Interfaces, 2021, 13, 53181-53193.	4.0	19
314	Low Temperature Nano Mechano-electrocatalytic CH ₄ Conversion. ACS Nano, 2022, 16, 8684-8693.	7.3	19
315	Fabrication, Structural Characterization and Testing of a Nanostructured Tin Oxide Gas Sensor. IEEE Sensors Journal, 2009, 9, 563-568.	2.4	18
316	Enhanced quantum efficiency from a mosaic of two dimensional MoS ₂ formed onto aminosilane functionalised substrates. Nanoscale, 2016, 8, 12258-12266.	2.8	18
317	Bismuth telluride topological insulator synthesized using liquid metal alloys: Test of NO2 selective sensing. Applied Materials Today, 2021, 22, 100954.	2.3	18
318	Comparison between conductometric and layered surface acoustic wave hydrogen gas sensors. Smart Materials and Structures, 2006, 15, S131-S136.	1.8	17
319	Nanotip Formation from Liquid Metals for Soft Electronic Junctions. ACS Applied Materials & Interfaces, 2021, 13, 43247-43257.	4.0	17
320	Noncontact rotation, levitation, and acceleration of flowing liquid metal wires. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
321	<title>Thermoelectric properties of bismuth telluride thin films deposited by radio frequency magnetron sputtering</title> . , 2005, , .		16
322	Effect of crystallographic orientation on the anodic formation of nanoscale pores/tubes in TiO2 films. Applied Surface Science, 2009, 256, 120-123.	3.1	16
323	Potentiometric solid-state sensor for DO measurement in water using sub-micron Cu0.4Ru3.4O7+ RuO2 sensing electrode. Sensors and Actuators B: Chemical, 2011, 153, 312-320.	4.0	16
324	Tuning Phase Transition and Thermochromic Properties of Vanadium Dioxide Thin Films via Cobalt Doping. ACS Applied Materials & Interfaces, 2022, 14, 19736-19746.	4.0	16

#	Article	IF	CITATIONS
325	Vehicle cabin air quality monitor using gas sensors for improved safety. , 0, , .		15
326	ZnO Nanobelt Based Conductometric H2 and NO2 Gas Sensors. , 0, , .		15
327	Seeded growth of ZnO nanorods from NaOH solutions. Materials Letters, 2009, 63, 249-251.	1.3	15
328	Hydrothermally formed functional niobium oxide doped tungsten nanorods. Nanotechnology, 2013, 24, 495501.	1.3	15
329	Liquid metal synthesis of two-dimensional aluminium oxide platelets to reinforce epoxy composites. Composites Science and Technology, 2019, 181, 107708.	3.8	15
330	Boundary-Induced Auxiliary Features in Scattering-Type Near-Field Fourier Transform Infrared Spectroscopy. ACS Nano, 2020, 14, 1123-1132.	7.3	15
331	Hydrogen Gas Sensing Performance Of Pt/Sno ₂ Nanowires/Sic Mos Devices. International Journal on Smart Sensing and Intelligent Systems, 2008, 1, 771-783.	0.4	15
332	Oscillatory bifurcation patterns initiated by seeded surface solidification of liquid metals. , 2022, 1, 158-169.		15
333	High- <i>Q</i> Phonon-polaritons in Spatially Confined Freestanding α-MoO ₃ . ACS Photonics, 2022, 9, 905-913.	3.2	15
334	Supplementing Dietary Fibers With a Low FODMAP Diet in Irritable Bowel Syndrome: A Randomized Controlled Crossover Trial. Clinical Gastroenterology and Hepatology, 2022, 20, 2112-2120.e7.	2.4	15
335	A layered SAW device based on ZnO/LiTaO/sub 3/ for liquid media sensing applications. , 0, , .		14
336	A Room Temperature Polyaniline Nanofiber Hydrogen Gas Sensor. , 0, , .		14
337	Integrated microthermoelectric cooler for microfluidic channels. Experimental Thermal and Fluid Science, 2006, 30, 821-828.	1.5	14
338	Dielectrophoretically tuneable optical waveguides using nanoparticles in microfluidics. Applied Physics Letters, 2010, 96, 101108.	1.5	14
339	Pt/graphene nano-sheet based hydrogen gas sensor. , 2009, , .		13
340	A comparison of forward and reverse bias operation in a Pt/nanostructured ZnO Schottky diode based hydrogen sensor. Procedia Chemistry, 2009, 1, 979-982.	0.7	13
341	Interaction of guided light in rib polymer waveguides with dielectrophoretically controlled nanoparticles. Microfluidics and Nanofluidics, 2011, 11, 93-104.	1.0	13
342	Designing an in-vitro gas profiling system for human faecal samples. Sensors and Actuators B: Chemical, 2017, 238, 754-764.	4.0	13

#	Article	IF	CITATIONS
343	A unique in vivo approach for investigating antimicrobial materials utilizing fistulated animals. Scientific Reports, 2015, 5, 11515.	1.6	12
344	Patterned films from exfoliated two-dimensional transition metal dichalcogenides assembled at a liquid–liquid interface. Journal of Materials Chemistry C, 2017, 5, 6937-6944.	2.7	12
345	High Surface Area to Volume Ratio 3D Nanoporous Nb2O5 for Enhanced Humidity Sensing. Journal of Electronic Materials, 2019, 48, 3805-3815.	1.0	12
346	Meandering Pattern 433 MHz Antennas for Ingestible Capsules. IEEE Access, 2021, 9, 91874-91882.	2.6	12
347	Post-transition metal/polymer composites for the separation and sensing of alkali metal ions. Journal of Materials Chemistry A, 2021, 9, 19854-19864.	5.2	12
348	Ag–Ga Bimetallic Nanostructures Ultrasonically Prepared from Silver–Liquid Gallium Core–Shell Systems Engineered for Catalytic Applications. ACS Applied Nano Materials, 2022, 5, 6820-6831.	2.4	12
349	Optical H2 Sensing Performance of Anodized Nanoporous TiO2 Thin Films. Procedia Chemistry, 2009, 1, 951-954.	0.7	11
350	Dielectrophoresis with 3D microelectrodes fabricated by surface tension assisted lithography. Electrophoresis, 2013, 34, 3150-3154.	1.3	11
351	Investigation of the surface of Ga–Sn–Zn eutectic alloy by the characterisation of oxide nanofilms obtained by the touch-printing method. Nanomaterials, 2019, 9, 235.	1.9	11
352	Association between severity of COVID-19 symptoms and habitual food intake in adult outpatients. BMJ Nutrition, Prevention and Health, 2021, 4, 469-478.	1.9	11
353	Effect of Bi3+ ion on piezoelectric properties of K x Na1â^'x NbO3. Journal of Electroceramics, 2008, 21, 629-632.	0.8	10
354	Nanoporous titanium oxide synthesized from anodized Filtered Cathodic Vacuum Arc Ti thin films. Thin Solid Films, 2009, 518, 1180-1184.	0.8	10
355	Gas Sensing Properties of Interconnected ZnO Nanowires. Sensor Letters, 2011, 9, 929-935.	0.4	10
356	Titanium Dioxide-Based <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mn mathvariant="bold">64 </mml:mn </mml:mrow> <mml:mo> a^~ </mml:mo> </mml:msup> </mml:mrow> xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> LiNb</mml:mrow></mml:msub></mml:mrow></mml:math 	:h xY:X < mm vO < /mml:n	nl:math ntext>
357	Acoustic Wave Hydrogen Gas Sensors. Journal of Sensors, 2008, 2008, 1-5. Dielectrophoretically assembled particles: feasibility for optofluidic systems. Microfluidics and Nanofluidics, 2010, 9, 755-763.	1.0	9
358	Enhanced Charge Carrier Mobility in Twoâ€Dimensional High Dielectric Molybdenum Oxide (Adv. Mater.) Tj ETQq	0 0 0 rgB1 11.1	[/gverlock 1
359	Lithium Intercalated Molybdenum Disulfide-Coated Cotton Thread as a Viable Nerve Tissue Scaffold Candidate. ACS Applied Nano Materials, 2019, 2, 2044-2053.	2.4	9

Comparison of ZnO/64° LiNbO₃ and ZnO/36° LiTaO₃ Surface Acoustic Wave 0.4 9 Devices for Sensing Applications. Sensor Letters, 2006, 4, 135-138.

#	Article	IF	CITATIONS
361	Liquid state of post-transition metals for interfacial synthesis of two-dimensional materials. Applied Physics Reviews, 2022, 9, .	5.5	9
362	Insights into the Interfacial Contact and Charge Transport of Gas-Sensing Liquid Metal Marbles. ACS Applied Materials & Interfaces, 2022, 14, 30112-30123.	4.0	9
363	Dielectrophoretically patterned carbon nanotubes to sort microparticles. Electrophoresis, 2010, 31, 3380-3390.	1.3	8
364	H2 sensing performance of optical fiber coated with nano-platelet WO3 film. Procedia Engineering, 2010, 5, 1204-1207.	1.2	8
365	Synthesis and Nanoscale Investigation of the Electrical Properties of Quasi-2D Semiconductor Nb \$_{f 2}\$O\$_{f 5}\$ Nanosheets. IEEE Nanotechnology Magazine, 2013, 12, 641-648.	1.1	8
366	Reorientation of microfluidic channel enables versatile dielectrophoretic platforms for cell manipulations. Electrophoresis, 2013, 34, 1407-1414.	1.3	8
367	Atomic Force Microscopy Adhesion Mapping: Revealing Assembly Process in Inorganic Systems. Journal of Physical Chemistry C, 2013, 117, 19984-19990.	1.5	8
368	Gold Coated Nanostructured Molybdenum Oxide Mercury Vapour Quartz Crystal Microbalance Sensor. Sensor Letters, 2008, 6, 231-236.	0.4	8
369	Large Area Ultrathin InN and Tin Doped InN Nanosheets Featuring 2D Electron Gases. ACS Nano, 2022, 16, 5476-5486.	7.3	8
370	A novel Love mode SAW sensor with ZnO layer operating in gas and liquid media. , 0, , .		7
371	Interaction of hydrogen with zinc oxide nanorods: why the spacing is important. Nanotechnology, 2011, 22, 135704.	1.3	7
372	The correlation between electric field emission phenomenon and Schottky contact reverse bias characteristics in nanostructured systems. Journal of Applied Physics, 2011, 109, 114316.	1.1	7
373	Dynamic manipulation of modes in an optical waveguide using dielectrophoresis. Electrophoresis, 2012, 33, 2075-2085.	1.3	7
374	Optical Hydrogen Sensing Based on Hybrid 2D MoO 3 /Au Nanoparticles. Procedia Engineering, 2015, 120, 1141-1144.	1.2	7
375	Hydrogen sensors based on gold nanoclusters assembled onto ZnO nanostructures at low operating temperature. Ceramics International, 2017, 43, S511-S515.	2.3	7
376	Comparison of Conductometric Gas Sensitivity of Surface Acoustic Wave Modes in Layered Structures. Sensor Letters, 2005, 3, 66-70.	0.4	7
377	Hydrogen Gas Sensor Based on Sb _{<i>x</i>} O _{<i>y</i>} Nanostructures with a Langasite Substrate. Sensor Letters, 2006, 4, 419-425.	0.4	7
378	WO ₃ -Au-Pt Nanocrystalline Thin Films as Optical Gas Sensors. Sensor Letters, 2011, 9, 595-599.	0.4	7

#	Article	IF	CITATIONS
379	Induction heating for the removal of liquid metal-based implant mimics: A proof-of-concept. Applied Materials Today, 2022, 27, 101459.	2.3	7
380	A novel Love mode device with nanocrystalline ZnO film for gas sensing applications. , 0, , .		6
381	Spatial Sensitivity Distribution of Surface Acoustic Wave Resonator Sensors. IEEE Sensors Journal, 2007, 7, 204-212.	2.4	6
382	Hydrogen gas sensing properties of Pt/Ta2O5 Schottky diodes based on Si and SiC substrates. Procedia Engineering, 2010, 5, 147-151.	1.2	6
383	Semiconductors: Twoâ€Ðimensional Molybdenum Trioxide and Dichalcogenides (Adv. Funct. Mater.) Tj ETQq1 1	0.784314	rgBT /Overlo
384	Investigation of different nanoparticles for magnetophoretically enabled nanofin heat sinks in microfluidics. Lab on A Chip, 2014, 14, 1604-1613.	3.1	6
385	Future is ready for swallowable sensors. Hepatobiliary Surgery and Nutrition, 2019, 8, 267-269.	0.7	6
386	Guided SH-SAW Sensing System for Liquid Viscosity Sensing Applications. Sensor Letters, 2011, 9, 605-608.	0.4	6
387	Diagnosis of Hemochromatosis. Annals of Internal Medicine, 1999, 131, 311.	2.0	5
388	Love mode layered surface acoustic wave filters. Electronics Letters, 2001, 37, 802.	0.5	5
389	A finite element approach for 3-dimensional simulation of layered acoustic wave transducers. , 0, , .		5
390	Development of a conductive photoresist with a mixture of SU-8 and HCl doped polyaniline. , 2005, , .		5
391	A Room Temperature Polyaniline/SnO <inf>2</inf> Nanofiber Composite Based Layered ZnO/64° YX LiNbO <inf>3</inf> SAW Hydrogen Gas Sensor. , 2006, , .		5
392	Graphene-like nano-Sheets/36° LiTaO ₃ surface acoustic wave hydrogen gas sensor. , 2008, ,		5
393	Surface Morphology Induced Localized Electric Field and Piezoresponse Enhancement in Nanostructured Thin Films. ACS Nano, 2011, 5, 1067-1072.	7.3	5
394	Elastomeric composites for flexible microwave substrates. Journal of Applied Physics, 2016, 119, .	1.1	5
395	Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides. Electronic Structure, 2019, 1, 015005.	1.0	5
396	Carbonization of low thermal stability polymers at the interface of liquid metals. Carbon, 2021, 171, 938-945.	5.4	5

#	Article	IF	CITATIONS
397	Ventilation control for improved cabin air quality and vehicle safety. , 0, , .		4
398	Study of novel Love mode surface acoustic wave filters. , 0, , .		4
399	Density Functional Theory Study of ZnO Nanostructures for NO and NO2 Sensing. , 2007, , .		4
400	Conductometric sensor based on nanostructured titanium oxide thin film deposited on polyimide substrate with dissimilar metallic electrodes. , 2008, , .		4
401	A hydrogen gas sensor fabricated from polythiophene nanofibers deposited on a 36°YX LiTaO 3 layered surface acoustic wave transducer. Proceedings of SPIE, 2008, , .	0.8	4
402	Polyvinylpyrrolidoneâ^•Multiwall Carbon Nanotube Composite Based 36° YX LiTaO[sub 3] Surface Acoustic Wave For Hydrogen Gas Sensing Applications. AIP Conference Proceedings, 2011, , .	0.3	4
403	Dielectrophoretically controlled Fresnel zone plate. Lab on A Chip, 2015, 15, 1092-1100.	3.1	4
404	A novel mathematical model for the dynamic assessment of gas composition and production in closed or vented fermentation systems. Sensors and Actuators B: Chemical, 2018, 254, 354-362.	4.0	4
405	An in-vitro upper gut simulator for assessing continuous gas production: A proof-of-concept using milk digestion. Journal of Functional Foods, 2018, 47, 200-210.	1.6	4
406	Anisotropic Materials Based on Liquid Metals. Matter, 2020, 3, 613-614.	5.0	4
407	Pt/Nanograined ZnO/SiC Schottky Diode Based Hydrogen and Propene Sensor. Sensor Letters, 2011, 9, 55-58.	0.4	4
408	Pt/Nanostructured RuO ₂ /SiC Schottky Diode Based Hydrogen Gas Sensors. Sensor Letters, 2011, 9, 797-800.	0.4	4
409	Study of layered SAW devices operating at different modes for gas sensing applications. , 0, , .		3
410	Finite-element analysis for simulation of layered SAW devices with XY LiNbO 3 substrate. , 2002, , .		3
411	Investigation of gas sensors for cabin air quality monitoring. , 0, , .		3
412	Comprehensive analysis of SAW sensor performance in liquid media by Green's function method. , 0, , .		3
413	A Room Temperature Polyaniline/In2O3 Nanofiber Composite Based Layered ZnO/64° YX LiNbO3 SAW Hydrogen Gas Sensor. , 2006, , .		3
414	ZnO nanostructured arrays grown from aqueous solutions on different substrates. , 2008, , .		3

#	Article	IF	CITATIONS
415	Pt/ZnO/SiC thin film for hydrogen gas sensing. , 2008, , .		3
416	ZnO nanostructures grown on epitaxial GaN. Thin Solid Films, 2009, 518, 1053-1056.	0.8	3
417	Layered Surface Acoustic Wave Hydrogen Sensor Based on Polyethylaniline Nanofibers. Procedia Chemistry, 2009, 1, 220-223.	0.7	3
418	Pt/MoO. , 2010, , .		3
419	A Hydrogen Sensor Based on Graphitic Carbon. IEEE Sensors Journal, 2011, 11, 1913-1916.	2.4	3
420	Hydrogen gas sensors based on thermally evaporated nanostructured MoO <inf>3</inf> Schottky diode: A comparative study. , 2011, , .		3
421	A comparison study on hydrogen sensing performance of Pt/MoO <inf>3</inf> nanoplatelets coated with a thin layer of Ta <inf>2</inf> O <inf>5</inf> or La <inf>2</inf> O <inf>3</inf> . , 2013, , .		3
422	Assessment of a Raman micro-spectroscopy/microfluidics unit using a model E. coli/glucose bio-system. , 2013, , .		3
423	Passive wireless gas sensors based on the LTCC technique. , 2015, , .		3
424	Intra-ruminal gas-sensing in real time: a proof-of-concept. Animal Production Science, 2016, 56, 204.	0.6	3
425	2D Materials: Coordination Polymer to Atomically Thin, Holey, Metalâ€Oxide Nanosheets for Tuning Band Alignment (Adv. Mater. 52/2019). Advanced Materials, 2019, 31, 1970370.	11.1	3
426	Layered Surface Acoustic Wave Hydrogen Sensor with Nanoporous Polyaniline as the Active Layer. Sensor Letters, 2011, 9, 73-76.	0.4	3
427	SAW Gas Sensors with Metal Oxides Nanoplatelets Layers. Sensor Letters, 2011, 9, 920-924.	0.4	3
428	Love mode SAW sensors with ZnO layer operating in gas and liquid media. , 0, , .		2
429	Layered SAW nitrogen dioxide sensor with WO 3 selective layer. , 2003, , .		2
430	Modelling of a thin film thermoelectric micro-peltier module. , 0, , .		2
431	Comparison between conductometric and layered SAW hydrogen gas sensor. , 2004, , .		2
432	H/sub 2/ and NO/sub 2/ Gas Sensors with ZnO Nanobelt Layer on 36° LiTaO/sub 3/ and 64° LiNbO/sub 3/ SAW Transducers. , 0, , .		2

#	Article	IF	CITATIONS
433	Growth of Indium Oxide Nanostructures by Thermal Evaporation. , 2006, , .		2
434	PSSA Doped Polyaniline Nanofiber Based ZnO/64/spl deg/ YX LiNbO/sub 3/ SAW H/sub 2/ Gas Sensor. , 2006, , .		2
435	Carbon Monoxide Gas Sensor Based on Titanium Dioxide Nanocrystalline with a Langasite Substrate. , 2006, , .		2
436	Nanomaterial Based Room Temperature Hydrogen Gas Sensors. , 2006, , .		2
437	3K-5 Electrical Parameter Extraction of a Flexural Plate Wave Device Using the Finite Element Method. , 2006, , .		2
438	3D Modeling and Simulation of SH-SAW Devices Using the Finite Element Method. , 2007, , .		2
439	Pt/anodized TiO2/SiC-based MOS device for hydrocarbon sensing. Proceedings of SPIE, 2008, , .	0.8	2
440	Reverse Biased Schottky Contact Hydrogen Sensors Based on Ptâ^•nanostructured ZnOâ^•SiC. , 2009, , .		2
441	Enhanced electrochemical heavy metal ion sensor using liquid metal marbles - towards on-chip application. , 2012, , .		2
442	Polyvinylpyrrolidone/polyaniline composite based 36° YX LiTaO <inf>3</inf> Surface Acoustic Wave H <inf>2</inf> gas sensor. , 2012, , .		2
443	Dynamic analysis of angiogenesis in transgenic zebrafish embryos using a 3D multilayer chip-based technology. , 2013, , .		2
444	Two dimensional tungsten oxide nanosheets with unprecedented selectivity and sensitivity to NO <inf>2</inf> . , 2017, , .		2
445	Exploring electric field assisted van der Waals weakening of stratified crystals. Applied Materials Today, 2018, 12, 359-365.	2.3	2
446	Broadband Photodetectors: Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors (Adv. Mater. 45/2020). Advanced Materials, 2020, 32, 2070338.	11.1	2
447	Direct Transformation of Crystalline MoO3 into Few-Layers MoS2. Materials, 2020, 13, 2293.	1.3	2
448	SAW Gas Sensors with Titania Nanotubes Layers. Sensor Letters, 2011, 9, 925-928.	0.4	2
449	Applying normal mode method for calculation of acoustic wave propagation in the muddy bottom coastal regions. , 0, , .		1

450 Simulation of a Love mode surface acoustic wave transducer. , 1999, , .

1

#	Article	IF	CITATIONS
451	Design and fabrication of a SiO/sub 2//ST-cut quartz Love mode surface acoustic wave transducer for operation in liquid media. , 0, , .		1
452	The study of ZnO/XY LiNbO/sub 3/ layered saw devices for sensing applications. , 0, , .		1
453	Layered SAW nitrogen dioxide sensor based on a ZnO/ 36° YX LiTaO/sub 3/ structure with WO3 selective layer. , 0, , .		1
454	Microstructural Characterisation of RF Magnetron Sputtered ZnO Thin Films on SiC. Solid State Phenomena, 2004, 99-100, 123-126.	0.3	1
455	Finite Element Modelling of Flexural Plate Devices. , 0, , .		1
456	Surface acoustic wave based ozone sensor with an InO x /Si 3 N 4 /36 ${ m \hat{A}^o}$ YX LiTaO 3 structure. , 2005, , .		1
457	Optimum Sensitive Area of Surface Acoustic Wave Resonator Chemical and Bio-Sensors. , 2005, , .		1
458	Palladium Nanowire Hydrogen Sensor Based on a SAW Transducer. , 0, , .		1
459	Nanostructured Molybdenum Oxide Gas Sensors. , 2006, , .		1
460	Camphor sulfonic acid-doped polyaniline nanofiber-based 64oYX LiNbO 3 SAW hydrogen gas sensor. , 2006, , .		1
461	Optical and conductivity dependence on doping concentration of polyaniline nanofibers. , 2007, , .		1
462	Hydrogen gas sensor fabricated from polyanisidine nanofibers deposited on 36° YX LiTaO 3 layered surface acoustic wave transducer. , 2007, , .		1
463	Pt/SnO <inf>2</inf> Nanowires/SiC Based Hydrogen Gas Sensor. , 2007, , .		1
464	Mixing characterisation for a serpentine microchannel equipped with embedded barriers. Proceedings of SPIE, 2008, , .	0.8	1
465	Comparative study of the gasochromic performance of Pd/WO <inf>3</inf> and Pt/WO <inf>3</inf> nanotextured thin films for low concentration hydrogen sensing. , 2009, , .		1
466	Polyvinylpyrrolidone/multiwall carbon nanotube composite based 36° YX LiTaO <inf>3</inf> surface acoustic wave H <inf>2</inf> gas sensor. , 2010, , .		1
467	Dielectrophoresis of micro/nano particles using curved microelectrodes. Proceedings of SPIE, 2011, , .	0.8	1
468	Multivariate analysis of apoptotic markers versus cell cycle phase in living human cancer cells by microfluidic cytometry. Proceedings of SPIE, 2013, 8615, .	0.8	1

#	Article	IF	CITATIONS
469	Sa1441 Gas Sensor Capsules: A New Paradigm in Gastroenterology for Assessing Functional Roles of the Gut Microbiota. Gastroenterology, 2016, 150, S316-S317.	0.6	1
470	Soft micro-sensotransmitters emerging. Nature Nanotechnology, 2018, 13, 770-771.	15.6	1
471	Response to Comment on Considering the Effects of Microbiome and Diet on SARS-CoV-2 Infection. ACS Nano, 2020, 14, 12266-12266.	7.3	1
472	Transition metal oxides â \in " Thermoelectric properties. , 2013, 58, 1443-1443.		1
473	Camphor Sulfonic Acid Doped Polyaniline/Diamond Nanofibers Based ZnO/64° YX LiNbO ₃ Surface Acoustic Wave H ₂ GasSensor. Sensor Letters, 2008, 6, 947-950.	0.4	1
474	An equivalent circuit for simulating Love mode acoustic wave transducers: comparison of simulation and experimental results. , 0, , .		0
475	Selective NO/sub 2/ gas sensing characteristics of sol-gel prepared MoO/sub 3/-WO/sub 3/ thin films. , 0, , .		Ο
476	A ZnO/SiO/sub 2//Si[100] Love mode transducer. , 0, , .		0
477	A layered structure surface acoustic wave for oxygen sensing. , 0, , .		Ο
478	Mass sensitivity of layered shear-horizontal surface acoustic wave devices for sensing applications. , 2001, , .		0
479	<title>Comparison of layered surface acoustic wave transducers with different guiding metal oxide films for immunosensing applications</title> .,2001,,.		Ο
480	An analysis of MoO/sub 3/-WO/sub 3/ based gas sensors for monitoring applications. , 0, , .		0
481	<title>Investigation of MoO<formula><inf><roman>3</roman></inf></formula>-WO<formula><inf><roman>3</roman></inf>thin film microstructure for gas sensing applications</formula></title> ., 2001, 4590, 243.	a>	Ο
482	A layered SAW based NO/sub 2/ sensor with a copper phthalocyanine selective layer. , 0, , .		0
483	SOL-GEL MoO3-WO3 THIN FILMS FOR ETHANOL VAPOR SENSING. , 2002, , .		Ο
484	The study of InO/sub x//ZnO/XZ LiNbO/sub 3/ layered saw devices for ozone sensing. , 0, , .		0
485	Investigation of layered SAW sensors based on a WO 3 /ZnO/64° YX LiNbO 3 structure with gold catalytic layer. , 2005, , .		0
486	Comparative study of surface acoustic wave based hydrogen sensors with: InO x /SiN x /36° YX LiTaO 3 structure. , 2005, 6035, 333.		0

#	Article	IF	CITATIONS
487	Optimization of film thickness for thermoelectric micro-Peltier cooler. , 2005, , .		Ο
488	Ozone Sensors based on Layered SAW Devices with: InOx/SiNx/36° YX LiTaO3 Structure. , 2005, , .		0
489	Fabrication of an integrated microfluidic and surface acoustic wave device for fluid analysis. , 2005, ,		0
490	Ethanol sensor based on layered WO/sub 3/ / ZnO / 36 \hat{A}^{o} LiTaO/sub 3/ SAW devices. , 0, , .		0
491	SAW Hydrogen Sensor with Electropolymerized Polyaniline Nanofibers. , 2006, , .		0
492	Development of nanostructured titanium oxide thin films using a gas carving technique. , 2006, , .		0
493	A ZnO Nanorod Based 64° YX LiNbO3 Surface Acoustic Wave CO Sensor. , 2006, , .		0
494	Electrochemical Release of Immobilized IgG Protein. Materials Research Society Symposia Proceedings, 2007, 1010, 1.	0.1	0
495	Anodization of Sputtered Titanium Films. Materials Research Society Symposia Proceedings, 2007, 1023, 1.	0.1	0
496	Superhydrophobic and superhydrophilic surfaces with MoO x sub micron structures. , 2007, , .		0
497	Study of the alignment of multiwalled carbon nanotubes using dielectrophoresis. , 2007, , .		0
498	UV-induced wettability change of teflon-modified ZnO nanorod arrays on LiNbO <inf>3</inf> substrate. , 2008, , .		0
499	Microstamp patterning of protein arrays. , 2008, , .		0
500	Hydrodynamic flow focusing to study the isolated effects of the flow components. , 2008, , .		0
501	Dielectrophoretic Manipulation of Polystyrene Micro Particles in Microfluidic Systems. , 2009, , .		0
502	A Pt/oriented-C hydrogen gas sensor. , 2009, , .		0
503	Highly dispersed gold nanoparticles on nitrogen doped carbon nanotubes for hydrogen sensing. , 2010, , .		0
504	H 2 sensing performance of optical fibers coated with WO 3 film. , 2010, , .		0

29

#	Article	IF	CITATIONS
505	Oriented graphitic carbon films for hydrogen gas sensors. , 2010, , .		0
506	Pt/TiO <inf>2</inf> nanotubes/SiC schottky diodes for hydrogen gas sensing applications. , 2010, , .		0
507	Dielectrophoresis-Raman spectroscopy system for analysing suspended WO 3 nanoparticles. Proceedings of SPIE, 2011, , .	0.8	0
508	Tuneable optical waveguide based on dielectrophoresis and microfluidics. Proceedings of SPIE, 2011, , .	0.8	0
509	Dielectrophoresis of Nanoparticles for Polymer Waveguide Manipulation. , 2011, , .		0
510	Dielectrophoretic separation of Lactobacillus acidophillus bacteria from Saccharomyces cerevisiae yeasts. , 2012, , .		0
511	Mesoscopic particles with resonant and anti-resonant optical properties in microjluidics. , 2013, , .		0
512	Guest Editorial Special Issue on Selected Papers From the IEEE Sensors Conference 2014. IEEE Sensors Journal, 2016, 16, 3348-3348.	2.4	0
513	Polymeric composite membranes for gas separation: State-of-the-art 2D fillers. , 2020, , 293-306.		0
514	GAS SENSING PROPERTIES OF SOL-GEL FABRICATED MIXED OXIDE Mo03-WO3 FILMS. , 2001, , .		0
515	HYDROGEN SENSING BY ZNO/SIC BASED SOLID STATE STRUCTURES. , 2004, , .		0
516	WO3 HYDROCARBON SENSOR WITH FAST RESPONSE. , 2005, , .		0
517	Polyaniline/MWCNT Nanocomposite Based Hydrogen Sensor Operating at Room Temperature. Sensor Letters, 2011, 9, 69-72.	0.4	0
518	Selected Peer-Reviewed Articles from 13th International Meeting on Chemical Sensors (IMCS-13). Sensor Letters, 2011, 9, 584-586.	0.4	0
519	Transduction Platforms. , 2013, , 63-148.		0