
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5307118/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | On the relationship between extant innate immune receptors and the evolutionary origins of jawed vertebrate adaptive immunity. Immunogenetics, 2022, 74, 111-128.                                             | 1.2 | 18        |
| 2  | The evolution of innate immune receptors: investigating the diversity, distribution, and phylogeny of immune recognition across eukaryotes. Immunogenetics, 2022, 74, 1-4.                                    | 1.2 | 3         |
| 3  | Transcriptome annotation reveals minimal immunogenetic diversity among Wyoming toads, Anaxyrus baxteri. Conservation Genetics, 2022, 23, 669-681.                                                             | 0.8 | 2         |
| 4  | Therapeutic targeting of LCK tyrosine kinase and mTOR signaling in T-cell acute lymphoblastic leukemia. Blood, 2022, 140, 1891-1906.                                                                          | 0.6 | 19        |
| 5  | Knockdown of Transmembrane Protein 150A ( <i>TMEM150A</i> ) Results in Increased Production of<br>Multiple Cytokines. Journal of Interferon and Cytokine Research, 2022, 42, 336-342.                         | 0.5 | 1         |
| 6  | The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nature Genetics, 2021, 53, 1373-1384.                                                                                         | 9.4 | 48        |
| 7  | A Zebrafish Model of Metastatic Colonization Pinpoints Cellular Mechanisms of Circulating Tumor<br>Cell Extravasation. Frontiers in Oncology, 2021, 11, 641187.                                               | 1.3 | 6         |
| 8  | <i>Single-minded 2</i> is required for left-right asymmetric stomach morphogenesis. Development<br>(Cambridge), 2021, 148, .                                                                                  | 1.2 | 3         |
| 9  | Holosteans contextualize the role of the teleost genome duplication in promoting the rise of evolutionary novelties in the ray-finned fish innate immune system. Immunogenetics, 2021, 73, 479-497.           | 1.2 | 11        |
| 10 | From IgZ to IgT: A Call for a Common Nomenclature for Immunoglobulin Heavy Chain Genes of<br>Ray-Finned Fish. Zebrafish, 2021, 18, 343-345.                                                                   | 0.5 | 9         |
| 11 | <i>In vivo</i> assessment of respiratory burst inhibition by xenobiotic exposure using larval zebrafish. Journal of Immunotoxicology, 2020, 17, 94-104.                                                       | 0.9 | 8         |
| 12 | Transcriptome Ortholog Alignment Sequence Tools (TOAST) for phylogenomic dataset assembly. BMC<br>Evolutionary Biology, 2020, 20, 41.                                                                         | 3.2 | 9         |
| 13 | Lossâ€ofâ€function mutations in the melanocortin 1 receptor cause disruption of dorsoâ€ventral countershading in teleost fish. Pigment Cell and Melanoma Research, 2019, 32, 817-828.                         | 1.5 | 31        |
| 14 | Calcium imaging of primary canine sensory neurons: Smallâ€diameter neurons responsive to pruritogens and algogens. Brain and Behavior, 2019, 9, e01428.                                                       | 1.0 | 8         |
| 15 | Presence of cerebrospinal fluid antibodies associated with autoimmune encephalitis of humans in dogs with neurologic disease. Journal of Veterinary Internal Medicine, 2019, 33, 2175-2182.                   | 0.6 | 18        |
| 16 | Circulating tumor cells exit circulation while maintaining multicellularity augmenting metastatic potential. Journal of Cell Science, 2019, 132, .                                                            | 1.2 | 36        |
| 17 | Countershading in zebrafish results from an Asip1 controlled dorsoventral gradient of pigment cell differentiation. Scientific Reports, 2019, 9, 3449.                                                        | 1.6 | 45        |
| 18 | Ligand-mediated protein degradation reveals functional conservation among sequence variants of the<br>CUL4-type E3 ligase substrate receptor cereblon. Journal of Biological Chemistry, 2018, 293, 6187-6200. | 1.6 | 32        |

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fish Pigmentation. A Key Issue for the Sustainable Development of Fish Farming. , 2018, , 229-252.                                                                                                                                                                  |     | 10        |
| 20 | Fish pigmentation and the melanocortin system. Comparative Biochemistry and Physiology Part A,<br>Molecular & Integrative Physiology, 2017, 211, 26-33.                                                                                                             | 0.8 | 102       |
| 21 | BAC Recombineering of the <i>Agouti</i> Loci from Spotted Gar and Zebrafish Reveals the<br>Evolutionary Ancestry of Dorsal–Ventral Pigment Asymmetry in Fish. Journal of Experimental Zoology<br>Part B: Molecular and Developmental Evolution, 2017, 328, 697-708. | 0.6 | 18        |
| 22 | Spotted Gar and the Evolution of Innate Immune Receptors. Journal of Experimental Zoology Part B:<br>Molecular and Developmental Evolution, 2017, 328, 666-684.                                                                                                     | 0.6 | 24        |
| 23 | Disruption of Trim9 function abrogates macrophage motility in vivo. Journal of Leukocyte Biology, 2017, 102, 1371-1380.                                                                                                                                             | 1.5 | 8         |
| 24 | Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling. Development (Cambridge), 2017, 144, 2925-2939.                                                                                                              | 1.2 | 53        |
| 25 | Angiopellosis as an Alternative Mechanism of Cell Extravasation. Stem Cells, 2017, 35, 170-180.                                                                                                                                                                     | 1.4 | 42        |
| 26 | Evolutionary divergence of the vertebrate TNFAIP8 gene family: Applying the spotted gar orthology bridge to understand ohnolog loss in teleosts. PLoS ONE, 2017, 12, e0179517.                                                                                      | 1.1 | 7         |
| 27 | A Review of Automated Microinjection Systems for Single Cells in the Embryogenesis Stage. IEEE/ASME<br>Transactions on Mechatronics, 2016, 21, 2391-2404.                                                                                                           | 3.7 | 78        |
| 28 | The identification of additional zebrafish DICP genes reveals haplotype variation and linkage to MHC class I genes. Immunogenetics, 2016, 68, 295-312.                                                                                                              | 1.2 | 12        |
| 29 | Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish.<br>Journal of Experimental Medicine, 2016, 213, 979-992.                                                                                                        | 4.2 | 69        |
| 30 | Behind melanocortin antagonist overexpression in the zebrafish brain: A behavioral and transcriptomic approach. Hormones and Behavior, 2016, 82, 87-100.                                                                                                            | 1.0 | 34        |
| 31 | Phage display and structural studies reveal plasticity in substrate specificity of caspaseâ€3a from zebrafish. Protein Science, 2016, 25, 2076-2088.                                                                                                                | 3.1 | 16        |
| 32 | Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate<br>evolution. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113,<br>E5014-23.                                                 | 3.3 | 56        |
| 33 | The confounding complexity of innate immune receptors within and between teleost species. Fish and Shellfish Immunology, 2016, 53, 24-34.                                                                                                                           | 1.6 | 26        |
| 34 | The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.<br>Nature Genetics, 2016, 48, 427-437.                                                                                                                           | 9.4 | 545       |
| 35 | Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish.<br>Journal of Cell Biology, 2016, 213, 2133OIA95.                                                                                                               | 2.3 | 1         |
| 36 | Pigment patterns in adult fish result from superimposition of two largely independent pigmentation<br>mechanisms. Pigment Cell and Melanoma Research, 2015, 28, 196-209.                                                                                            | 1.5 | 55        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Machine learning reveals sexâ€specific 17βâ€estradiolâ€responsive expression patterns in white perch<br>( <i>Morone americana</i> ) plasma proteins. Proteomics, 2015, 15, 2678-2690.                                                     | 1.3 | 13        |
| 38 | Neutralization of Mitochondrial Superoxide by Superoxide Dismutase 2 Promotes Bacterial Clearance and Regulates Phagocyte Numbers in Zebrafish. Infection and Immunity, 2015, 83, 430-440.                                                | 1.0 | 38        |
| 39 | A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant.<br>Immunogenetics, 2015, 67, 501-513.                                                                                                             | 1.2 | 10        |
| 40 | Characterization of the Z lineage Major histocompatability complex class I genes in zebrafish.<br>Immunogenetics, 2014, 66, 185-198.                                                                                                      | 1.2 | 25        |
| 41 | Differential expression and ligand binding indicate alternative functions for zebrafish polymeric<br>immunoglobulin receptor (plgR) and a family of plgR-like (PIGRL) proteins. Immunogenetics, 2014, 66,<br>267-279.                     | 1.2 | 51        |
| 42 | An ITAM in a Nonenveloped Virus Regulates Activation of NF-κB, Induction of Beta Interferon, and Viral Spread. Journal of Virology, 2014, 88, 2572-2583.                                                                                  | 1.5 | 15        |
| 43 | Multigene families of immunoglobulin domain-containing innate immune receptors in zebrafish:<br>Deciphering the differences. Developmental and Comparative Immunology, 2014, 46, 24-34.                                                   | 1.0 | 22        |
| 44 | Preface to the Special Issue: Zebrafish immunity and infection models. Developmental and Comparative<br>Immunology, 2014, 46, 1-2.                                                                                                        | 1.0 | 0         |
| 45 | The MHC class I genes of zebrafish. Developmental and Comparative Immunology, 2014, 46, 11-23.                                                                                                                                            | 1.0 | 34        |
| 46 | A Myristoylated Alanine-Rich C Kinase Substrate–Related Peptide Suppresses Cytokine mRNA and<br>Protein Expression in LPS-Activated Canine Neutrophils. American Journal of Respiratory Cell and<br>Molecular Biology, 2013, 48, 314-321. | 1.4 | 30        |
| 47 | Super Resolution Microscopy Reveals that Caveolin-1 Is Required for Spatial Organization of CRFB1 and Subsequent Antiviral Signaling in Zebrafish. PLoS ONE, 2013, 8, e68759.                                                             | 1.1 | 31        |
| 48 | A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos. Development (Cambridge), 2012, 139, 437-442.                                                                    | 1.2 | 29        |
| 49 | Development and Characterization of Anti-Nitr9 Antibodies. Advances in Hematology, 2012, 2012, 1-9.                                                                                                                                       | 0.6 | 5         |
| 50 | Genomic and functional characterization of the diverse immunoglobulin domain-containing protein (DICP) family. Genomics, 2012, 99, 282-291.                                                                                               | 1.3 | 22        |
| 51 | Surface modifications on InAs decrease indium and arsenic leaching under physiological conditions.<br>Applied Surface Science, 2012, 261, 842-850.                                                                                        | 3.1 | 12        |
| 52 | Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) Protein Plays A Critical Role In Production Of<br>Proinflammatory Cytokines By Isolated Canine Neutrophils. , 2012, , .                                                            |     | 0         |
| 53 | A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho<br>kinase in live embryos. Journal of Cell Science, 2012, 125, e1-e1.                                                                   | 1.2 | 1         |
| 54 | Transient Ectopic Overexpression of Agouti-Signalling Protein 1 (Asip1) Induces Pigment Anomalies in<br>Flatfish. PLoS ONE, 2012, 7, e48526.                                                                                              | 1.1 | 41        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics, 2011, 63, 123-141.                                                         | 1.2 | 73        |
| 56 | Two Myristoylated Alanineâ€Rich Câ€Kinase Substrate (MARCKS) Paralogs are Required for Normal<br>Development in Zebrafish. Anatomical Record, 2011, 294, 1511-1524.                                           | 0.8 | 13        |
| 57 | Expression and function of triggering receptor expressed on myeloid cells-1 (TREM-1) on canine neutrophils. Developmental and Comparative Immunology, 2011, 35, 872-880.                                      | 1.0 | 13        |
| 58 | Developmental and tissue-specific expression of NITRs. Immunogenetics, 2010, 62, 117-122.                                                                                                                     | 1.2 | 33        |
| 59 | Specific Resistance to <i>Pseudomonas aeruginosa</i> Infection in Zebrafish Is Mediated by the Cystic Fibrosis Transmembrane Conductance Regulator. Infection and Immunity, 2010, 78, 4542-4550.              | 1.0 | 75        |
| 60 | Sp2 Is a Maternally Inherited Transcription Factor Required for Embryonic Development. Journal of<br>Biological Chemistry, 2010, 285, 4153-4164.                                                              | 1.6 | 12        |
| 61 | Photocaged Morpholino Oligomers for the Light-Regulation of Gene Function in Zebrafish and <i>Xenopus</i> Embryos. Journal of the American Chemical Society, 2010, 132, 15644-15650.                          | 6.6 | 115       |
| 62 | Aquatic animal models of human disease: Selected papers and recommendations from the 4th<br>Conference. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009,<br>149, 121-128. | 1.3 | 9         |
| 63 | Form, function and phylogenetics of NITRs in bony fish. Developmental and Comparative Immunology, 2009, 33, 135-144.                                                                                          | 1.0 | 51        |
| 64 | Enhanced transcription of complement and coagulation genes in the absence of adaptive immunity.<br>Molecular Immunology, 2009, 46, 1505-1516.                                                                 | 1.0 | 31        |
| 65 | Light-activation of gene function in mammalian cells viaribozymes. Chemical Communications, 2009, ,<br>568-570.                                                                                               | 2.2 | 37        |
| 66 | A critical role for DAP10 and DAP12 in CD8+ T cell–mediated tissue damage in large granular<br>lymphocyte leukemia. Blood, 2009, 113, 3226-3234.                                                              | 0.6 | 38        |
| 67 | Evidence for a transposition event in a second NITR gene cluster in zebrafish. Immunogenetics, 2008, 60, 257-265.                                                                                             | 1.2 | 26        |
| 68 | Gene Silencing in Mammalian Cells with Lightâ€Activated Antisense Agents. ChemBioChem, 2008, 9,<br>2937-2940.                                                                                                 | 1.3 | 89        |
| 69 | The medaka novel immune-type receptor (NITR) gene clusters reveal an extraordinary degree of divergence in variable domains. BMC Evolutionary Biology, 2008, 8, 177.                                          | 3.2 | 28        |
| 70 | Sparc (Osteonectin) functions in morphogenesis of the pharyngeal skeleton and inner ear. Matrix<br>Biology, 2008, 27, 561-572.                                                                                | 1.5 | 57        |
| 71 | Assessing Infection and Immunity in Zebrafish. Zebrafish, 2008, 5, 189-191.                                                                                                                                   | 0.5 | 1         |
| 72 | Clinical improvement by farnesyltransferase inhibition in NK large granular lymphocyte leukemia<br>associated with imbalanced NK receptor signaling. Blood, 2008, 112, 4694-4698.                             | 0.6 | 49        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Structural characteristics of zebrafish orthologs of adaptor molecules that associate with transmembrane immune receptors. Gene, 2007, 401, 154-164.                                       | 1.0 | 41        |
| 74 | The zebrafish activating immune receptor Nitr9 signals via Dap12. Immunogenetics, 2007, 59, 813-821.                                                                                       | 1.2 | 43        |
| 75 | Immunoglobulin variable regions in molecules exhibiting characteristics of innate and adaptive immune receptors. Immunologic Research, 2007, 38, 294-304.                                  | 1.3 | 4         |
| 76 | Methylation of tRNAAsp by the DNA Methyltransferase Homolog Dnmt2. Science, 2006, 311, 395-398.                                                                                            | 6.0 | 967       |
| 77 | Conditional Transgene and Gene Targeting Methodologies in Zebrafish. Zebrafish, 2006, 3, 415-429.                                                                                          | 0.5 | 24        |
| 78 | Immune-related, lectin-like receptors are differentially expressed in the myeloid and lymphoid lineages of zebrafish. Immunogenetics, 2006, 58, 31-40.                                     | 1.2 | 34        |
| 79 | Role for retinoid signaling in left–right asymmetric digestive organ morphogenesis. Developmental<br>Dynamics, 2006, 235, 2266-2275.                                                       | 0.8 | 23        |
| 80 | Resolution of the novel immune-type receptor gene cluster in zebrafish. Proceedings of the National<br>Academy of Sciences of the United States of America, 2004, 101, 15706-15711.        | 3.3 | 94        |
| 81 | Investigating the morphology, function and genetics of cytotoxic cells in bony fish. Comparative<br>Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2004, 138, 271-280. | 1.3 | 43        |
| 82 | On the origins of adaptive immunity: innate immune receptors join the tale. Trends in Immunology, 2004, 25, 11-16.                                                                         | 2.9 | 90        |
| 83 | The Zebrafish as a Model Organism to Study Development of the Immune System. Advances in<br>Immunology, 2003, , 254-330.                                                                   | 1.1 | 104       |
| 84 | Novel Immune-type Receptor Genes and the Origins of Adaptive and Innate Immune Recognition.<br>Integrative and Comparative Biology, 2003, 43, 331-337.                                     | 0.9 | 11        |
| 85 | The zebrafish as a model organism to study development of the immune system. Advances in<br>Immunology, 2003, 81, 253-330.                                                                 | 1.1 | 135       |
| 86 | BIVM, a Novel Gene Widely Distributed among Deuterostomes, Shares a Core Sequence with an<br>Unusual Gene in Giardia lamblia. Genomics, 2002, 79, 750-755.                                 | 1.3 | 10        |
| 87 | Cloning novel immune-type inhibitory receptors from the rainbow trout, Oncorhynchus mykiss.<br>Immunogenetics, 2002, 54, 662-670.                                                          | 1.2 | 41        |
| 88 | Zebrafish as an immunological model system. Microbes and Infection, 2002, 4, 1469-1478.                                                                                                    | 1.0 | 103       |
| 89 | Novel immune-type receptor genes. Immunological Reviews, 2001, 181, 250-259.                                                                                                               | 2.8 | 81        |
| 90 | Cloning and sequence analysis of a zebrafish cDNA encoding DNA (cytosine-5)-methyltransferase-1.<br>Genesis, 2001, 30, 213-219.                                                            | 0.8 | 14        |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Extraordinary variation in a diversified family of immune-type receptor genes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13832-13837.                                                                      | 3.3 | 76        |
| 92  | Immune-type receptor genes in zebrafish share genetic and functional properties with genes encoded<br>by the mammalian leukocyte receptor cluster. Proceedings of the National Academy of Sciences of the<br>United States of America, 2001, 98, 6771-6776. | 3.3 | 107       |
| 93  | Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Research, 2001, 29, 439-448.                                                                                          | 6.5 | 203       |
| 94  | The zebrafish fth1, slc3a2, men1, pc, fgf3 and cycd1 genes define two regions of conserved synteny between linkage group 7 and human chromosome 11q13. Gene, 2000, 261, 235-242.                                                                            | 1.0 | 15        |
| 95  | Immune-Type Diversity in the Absence of Somatic Rearrangement. Current Topics in Microbiology and Immunology, 2000, 248, 271-282.                                                                                                                           | 0.7 | 26        |
| 96  | Expanding our understanding of immunoglobulin, T-cell antigen receptor, and novel immune-type<br>receptor genes: a subset of the immunoglobulin gene superfamily. Immunogenetics, 1999, 50, 124-133.                                                        | 1.2 | 23        |
| 97  | Cloning of two zebrafish cDNAs that share domains with the MHC class II-associated invariant chain.<br>Immunogenetics, 1999, 50, 84-88.                                                                                                                     | 1.2 | 32        |
| 98  | A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Human Molecular<br>Genetics, 1998, 7, 279-284.                                                                                                                               | 1.4 | 241       |
| 99  | DNA (cytosine-5)-methyltransferases in mouse cells and tissues. studies with a mechanism-based probe.<br>Journal of Molecular Biology, 1997, 270, 385-395.                                                                                                  | 2.0 | 321       |
| 100 | Cytosine methylation and the ecology of intragenomic parasites. Trends in Genetics, 1997, 13, 335-340.                                                                                                                                                      | 2.9 | 1,748     |
| 101 | New 5′ Regions of the Murine and Human Genes for DNA (Cytosine-5)-methyltransferase. Journal of<br>Biological Chemistry, 1996, 271, 31092-31097.                                                                                                            | 1.6 | 81        |
| 102 | Cross-linking a maturation-dependent ram sperm plasma membrane antigen induces the acrosome reaction. Molecular Reproduction and Development, 1991, 29, 200-207.                                                                                            | 1.0 | 22        |