Giancarlo C Righini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5306433/publications.pdf Version: 2024-02-01

		81839	138417
306	5,144	39	58
papers	citations	h-index	g-index
311	311	311	3862
511	511	511	5002
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Spherical whisperingâ€galleryâ€mode microresonators. Laser and Photonics Reviews, 2010, 4, 457-482.	4.4	384
2	Size dependence of electron—LO-phonon coupling in semiconductor nanocrystals. Physical Review B, 1996, 53, R10489-R10492.	1.1	134
3	Erbium-activated HfO2-based waveguides for photonics. Optical Materials, 2004, 25, 131-139.	1.7	116
4	High Q silica microbubble resonators fabricated by arc discharge. Optics Letters, 2011, 36, 3521.	1.7	115
5	Sol-gel Er-doped SiO2–HfO2 planar waveguides: A viable system for 1.5 μm application. Applied Physics Letters, 2002, 81, 28-30.	1.5	107
6	Optical Microspherical Resonators for Biomedical Sensing. Sensors, 2011, 11, 785-805.	2.1	105
7	Biosensing by WGM Microspherical Resonators. Sensors, 2016, 16, 905.	2.1	103
8	Glass optical waveguides: a review of fabrication techniques. Optical Engineering, 2014, 53, 071819.	0.5	89
9	Optical and surface properties of inorganic and hybrid organic–inorganic silica–titania sol–gel planar waveguides. Journal of Non-Crystalline Solids, 1999, 259, 182-190.	1.5	87
10	Active stripe waveguides produced by electron beam lithography in LiF single crystals. Optics Communications, 1998, 153, 223-225.	1.0	69
11	Design of photonic structures by sol–gel-derived silica nanospheres. Journal of Non-Crystalline Solids, 2007, 353, 674-678.	1.5	69
12	Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content. Applied Physics Letters, 2008, 93, .	1.5	69
13	High quality factor 1-D Er^3+-activated dielectric microcavity fabricated by RF-sputtering. Optics Express, 2012, 20, 21214.	1.7	64
14	Ion beam irradiated channel waveguides in Er3+-doped tellurite glass. Applied Physics Letters, 2007, 90, 121136.	1.5	63
15	White light generation in Dy3+-and Ce3+/Dy3+-doped zinc–sodium–aluminosilicate glasses. Journal of Luminescence, 2015, 167, 327-332.	1.5	60
16	Active optical waveguides based on Er- and Er/Yb-doped silicate glasses. Journal of Non-Crystalline Solids, 2001, 284, 223-229.	1.5	59
17	Self-absorption and radiation trapping in Er 3 + -doped TeO 2 -based glasses. Europhysics Letters, 2005, 71, 394-399.	0.7	59
18	Assessment of spectroscopic properties of erbium ions in a soda-lime silicate glass after silver–sodium exchange. Optical Materials, 2005, 27, 1743-1747.	1.7	56

#	Article	IF	CITATIONS
19	Optical spectroscopy and waveguide fabrication in Sm3+/Tb3+ doped zinc–sodium–aluminosilicate glasses. Optical Materials, 2012, 34, 1067-1071.	1.7	56
20	Sol–gel-derived photonic structures: fabrication, assessment, and application. Journal of Sol-Gel Science and Technology, 2011, 60, 408-425.	1.1	54
21	Infrared-to-visible CW frequency upconversion in erbium activated silica–hafnia waveguides prepared by sol–gel route. Journal of Non-Crystalline Solids, 2003, 322, 306-310.	1.5	53
22	Investigation of the role of silver on spectroscopic features of Er3+-activated Ag-exchanged silicate and phosphate glasses. Journal of Non-Crystalline Solids, 2005, 351, 1738-1742.	1.5	52
23	High-Q polymer-coated microspheres for immunosensing applications. Optics Express, 2009, 17, 14694.	1.7	52
24	Erbium activated HfO2 based glass–ceramics waveguides for photonics. Journal of Non-Crystalline Solids, 2007, 353, 494-497.	1.5	50
25	Quantum Confinement and Matrix Effects in Silver-Exchanged Soda Lime Glasses. Journal of Physical Chemistry C, 2009, 113, 4445-4450.	1.5	50
26	Glassâ€Ceramic Materials for Guidedâ€Wave Optics. International Journal of Applied Glass Science, 2015, 6, 240-248.	1.0	48
27	Investigations of the effects of the growth of SnO2 nanoparticles on the structural properties of glass–ceramic planar waveguides using Raman and FTIR spectroscopies. Journal of Molecular Structure, 2010, 976, 314-319.	1.8	47
28	Tb3+/Yb3+ co-activated Silica-Hafnia glass ceramic waveguides. Optical Materials, 2010, 33, 227-230.	1.7	47
29	Generation of hyper-parametric oscillations in silica microbubbles. Optics Letters, 2015, 40, 4508.	1.7	47
30	Effects of <scp><scp>Tm</scp></scp> ³⁺ Additions on the Crystallization of <scp><scp>LaF</scp></scp> ₃ Nanocrystals in Oxyfluoride Glasses: Optical Characterization and Upâ€Conversion. Journal of the American Ceramic Society, 2013, 96, 447-457.	1.9	46
31	Characterization of reactive ion etching of glass and its applications in integrated optics. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 2709-2712.	0.9	45
32	Optical field enhanced nonlinear absorption and optical limiting properties of 1-D dielectric photonic crystal with ZnO defect. Optical Materials, 2015, 50, 229-233.	1.7	45
33	An alternative method to obtain direct opal photonic crystal structures. Journal of Non-Crystalline Solids, 2009, 355, 1167-1170.	1.5	43
34	Raman optical amplification properties of sodium–niobium–phosphate glasses. Applied Physics Letters, 2010, 97, .	1.5	43
35	Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with a liquid crystal overlayer. Optical Engineering, 2002, 41, 2890.	0.5	42
36	Erbium-Activated Silica-Titania Planar Waveguides. Journal of Sol-Gel Science and Technology, 2003, 26, 1033-1036.	1.1	41

#	Article	IF	CITATIONS
37	High quality factor Er3+-activated dielectric microcavity fabricated by rf sputtering. Applied Physics Letters, 2006, 89, 171910.	1.5	41
38	Title is missing!. Optical and Quantum Electronics, 2002, 34, 1151-1166.	1.5	40
39	Tin-dioxide nanocrystals as Er 3+ luminescence sensitizers: Formation of glass-ceramic thin films and their characterization. Optical Materials, 2017, 63, 95-100.	1.7	40
40	General solution of the problem of perfect geodesic lenses for integrated optics. Journal of the Optical Society of America, 1979, 69, 1248.	1.2	39
41	Direct laser writing of ridge optical waveguides in silica-titania glass sol-gel films. Optical Materials, 1996, 5, 119-126.	1.7	39
42	Long period grating-based fiber coupler to whispering gallery mode resonators. Optics Letters, 2014, 39, 6525.	1.7	39
43	Er3+ ion dispersion in tellurium oxychloride glasses. Optical Materials, 2007, 29, 503-509.	1.7	38
44	Planar coupling to high-Q lithium niobate disk resonators. Optics Express, 2011, 19, 3651.	1.7	38
45	Rare-earth-activated glass–ceramic waveguides. Optical Materials, 2010, 32, 1644-1647.	1.7	37
46	Lens-ended fibers for medical applications: a new fabrication technique. Applied Optics, 1984, 23, 3277.	2.1	35
47	Erbium-activated silica–titania planar waveguides on silica-on-silicon substrates prepared by rf sputtering. Journal of Non-Crystalline Solids, 2001, 284, 230-236.	1.5	35
48	Characterization of Er-doped sodium-niobium phosphate glasses. , 2001, 4282, 210.		35
49	Spectroscopic characterization and optical waveguide fabrication in Ce3+, Tb3+ and Ce3+/Tb3+ doped zinc–sodium–aluminosilicate glasses. Optical Materials, 2011, 33, 1892-1897.	1.7	34
50	From flexible electronics to flexible photonics: A brief overview. Optical Materials, 2021, 115, 111011.	1.7	34
51	Large Raman Gain in a Stable Nanocomposite Based on Niobiosilicate Glass. Journal of Physical Chemistry C, 2011, 115, 17314-17319.	1.5	32
52	Confocal reflectance microscopy for determination of microbubble resonator thickness. Optics Express, 2015, 23, 16693.	1.7	32
53	Spectroscopic and lasing properties of Er3+-doped glass microspheres. Journal of Non-Crystalline Solids, 2006, 352, 2360-2363.	1.5	31
54	Compositional and thermal treatment effects on Raman gain and bandwidth in nanostructured silica based glasses. Optical Materials, 2013, 36, 408-413.	1.7	31

#	Article	IF	CITATIONS
55	Characterization of a highly photorefractive RF-sputtered SiO2-GeO2 waveguide. Optics Express, 2005, 13, 1696.	1.7	30
56	Aluminum co-doping of soda-lime silicate glasses: Effect on optical and spectroscopic properties. Journal of Non-Crystalline Solids, 2005, 351, 1747-1753.	1.5	30
57	Metal oxide one dimensional photonic crystals made by RF sputtering and spin coating. Ceramics International, 2015, 41, 8655-8659.	2.3	30
58	Digital-holography refractive-index-profile measurement of phase gratings. Applied Physics Letters, 2006, 88, 111114.	1.5	29
59	Silver to erbium energy transfer in phosphate glasses. Journal of Non-Crystalline Solids, 2007, 353, 498-501.	1.5	29
60	Er3+-doped silica–hafnia films for optical waveguides and spherical resonators. Journal of Non-Crystalline Solids, 2009, 355, 1853-1860.	1.5	29
61	Hybrid microspheres for nonlinear Kerr switching devices. Optics Express, 2011, 19, 9523.	1.7	29
62	Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber. Optical Materials, 2016, 58, 279-284.	1.7	29
63	Photonic Crystal Stimuli-Responsive Chromatic Sensors: A Short Review. Micromachines, 2020, 11, 290.	1.4	29
64	Silver doping of silica-hafnia waveguides containing Tb 3+ /Yb 3+ rare earths for downconversion in PV solar cells. Optical Materials, 2016, 60, 264-269.	1.7	28
65	Raman scattering in CdTe1-xSex and CdS1-xSex nanocrystals embedded in glass. Superlattices and Microstructures, 1994, 16, 51-54.	1.4	27
66	Optical waveguides produced in LiF by MeV ion beam bombardment. Applied Physics Letters, 2002, 81, 4103-4105.	1.5	27
67	Tailoring of the free spectral range and geometrical cavity dispersion of a microsphere by a coating layer. Optics Letters, 2014, 39, 5173.	1.7	27
68	Dependence of the up-conversion emission of Li+ co-doped Y2O3:Er3+ films with dopant concentration. Journal of Luminescence, 2015, 167, 352-359.	1.5	27
69	Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties. , 2001, , .		26
70	Smallâ€angle neutron scattering study of semiconductor microcrystallites in optical glasses. Applied Physics Letters, 1990, 57, 2879-2881.	1.5	25
71	Fabrication and Characterization of Sol-Gel GeO2-SiO2Erbium-Doped Planar Waveguides. Journal of Sol-Gel Science and Technology, 1998, 13, 535-539.	1.1	25
72	Er3+/Yb3+-activated silica–titania planar waveguides for EDPWAs fabricated by rf-sputtering. Journal of Non-Crystalline Solids, 2003, 322, 289-294.	1.5	25

#	Article	IF	CITATIONS
73	Femtosecond laser direct writing of gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass. Journal Physics D: Applied Physics, 2009, 42, 205106.	1.3	24
74	Structural and spectroscopic properties of Eu3+-activated nanocrystalline tetraphosphates loaded in silica–hafnia thin film. Journal of Non-Crystalline Solids, 2014, 401, 32-35.	1.5	24
75	Photoluminescence and lasing in whispering gallery mode glass microspherical resonators. Journal of Luminescence, 2016, 170, 755-760.	1.5	24
76	Erbium-activated aluminum fluoride glasses: optical and spectroscopic properties. Journal of Non-Crystalline Solids, 2001, 284, 243-248.	1.5	23
77	Preparation and characterization of ZnO particles embedded in organic–inorganic planar waveguide by sol–gel route. Journal of Non-Crystalline Solids, 2009, 355, 1132-1135.	1.5	23
78	Er3+/Yb3+ Co-Activated Silica-Alumina Monolithic Xerogels. Journal of Sol-Gel Science and Technology, 2003, 26, 943-946.	1.1	22
79	MeV Energy \$hbox{N}^{+}\$-Implanted Planar Optical Waveguides in Er-Doped Tungsten-Tellurite Glass Operating at 1.55 \$muhbox{m}\$. IEEE Photonics Journal, 2012, 4, 721-727.	1.0	22
80	Optical spectroscopy and optical waveguide fabrication in Eu3+ and Eu3+/Tb3+ doped zinc–sodium–aluminosilicate glasses. Journal of Luminescence, 2014, 147, 336-340.	1.5	22
81	Hybrid 1-D dielectric microcavity: Fabrication and spectroscopic assessment of glass-based sub-wavelength structures. Ceramics International, 2015, 41, 7429-7433.	2.3	22
82	SiO2-SnO2:Er3+ Glass-Ceramic Monoliths. Applied Sciences (Switzerland), 2018, 8, 1335.	1.3	22
83	Stimulated anti-Stokes Raman scattering resonantly enhanced in silica microspheres. Optics Letters, 2014, 39, 5993.	1.7	21
84	Towards a Glass New World: The Role of Ion-Exchange in Modern Technology. Applied Sciences (Switzerland), 2021, 11, 4610.	1.3	21
85	Strip-Loaded Sol-Gel Waveguides: Design and Fabrication. Fiber and Integrated Optics, 2001, 20, 29-43.	1.7	20
86	Correlation between the structural and optical properties of polydispersed II–VI quantum dots in glass matrix. Journal of Applied Physics, 1991, 70, 6898-6901.	1.1	19
87	Integrated optical amplifiers and microspherical lasers based on erbium-doped oxide glasses. Optical Materials, 2005, 27, 1711-1717.	1.7	19
88	About the role of phase matching between a coated microsphere and a tapered fiber: experimental study. Optics Express, 2013, 21, 20954.	1.7	19
89	UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films. Applied Physics Letters, 2006, 89, 121102	1.5	18
90	CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics. Optical Materials, 2009, 31, 1310-1314.	1.7	18

#	Article	IF	CITATIONS
91	Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering. Journal of Non-Crystalline Solids, 2009, 355, 1176-1179.	1.5	18
92	Sol–Gel-Derived Glass-Ceramic Photorefractive Films for Photonic Structures. Crystals, 2017, 7, 61.	1.0	18
93	Design of optical-waveguide homogeneous refracting lenses. Applied Optics, 1988, 27, 4193.	2.1	17
94	Homogeneous Refracting Lenses for Integrated Optical Circuits. Journal of Modern Optics, 1988, 35, 1029-1048.	0.6	17
95	<title>Ion exchange in glass: a mature technology for photonic devices</title> . , 2001, 4453, 93.		17
96	Assessment of SnO2-nanocrystal-based luminescent glass-ceramic waveguides for integrated photonics. Ceramics International, 2021, 47, 5534-5541.	2.3	17
97	Upconversion luminescence of a calcium sodium aluminosilicate glass doped with erbium. Materials Letters, 2004, 58, 2207-2212.	1.3	16
98	Solvent sensitive polymer composite structures. Optical Materials, 2013, 36, 130-134.	1.7	16
99	Glassy Microspheres for Energy Applications. Micromachines, 2018, 9, 379.	1.4	16
100	CdS- and PbS-doped silica-titania optical waveguides. , 1994, 2288, 174.		15
101	Enhanced spectroscopic properties at 1.5 μ m in Er3+/Yb3+-activated silica–titania planar waveguides fabricated by rf-sputtering. Optical Materials, 2004, 25, 117-122.	1.7	15
102	Extended transfer matrix modeling of an erbium-doped cavity with SiO2/TiO2 Bragg reflectors. Optical Materials, 2009, 31, 1306-1309.	1.7	15
103	Sol–gel-derived photonic structures handling erbium ions luminescence. Optical and Quantum Electronics, 2015, 47, 117-124.	1.5	15
104	Efficient frequency generation in phoXonic cavities based on hollow whispering gallery mode resonators. Scientific Reports, 2017, 7, 44198.	1.6	15
105	A family of perfect aspherical geodesic lenses for integrated optical circuits. IEEE Journal of Quantum Electronics, 1979, 15, 1-4.	1.0	14
106	A comparison between different methods of calculating the radiative lifetime of the 4113/2 level of Er3+ in various glasses. Journal of Non-Crystalline Solids, 2003, 322, 319-323.	1.5	14
107	Optical and spectroscopic properties of soda-lime alumino silicate glasses doped with Er3+ and/or Yb3+. Optical Materials, 2006, 28, 1271-1275.	1.7	14
108	Design of Rare-Earth-Doped Microspheres. IEEE Photonics Technology Letters, 2010, 22, 422-424.	1.3	14

#	Article	IF	CITATIONS
109	Supercontinuum source tuned by an on-axis monochromator for fluorescence lifetime imaging. Optics Express, 2010, 18, 20505.	1.7	14
110	Rare-earth-doped sol-gel waveguides: a review. , 1998, , .		13
111	Photoluminescence spectra of an optically pumped erbium-doped micro-cavity with SiO2/TiO2 distributed Bragg reflectors. Journal of Luminescence, 2009, 129, 1989-1993.	1.5	13
112	Structural and optical characterization of ZrO2:CeO2 slab waveguides obtained via sol–gel. Optical Materials, 2012, 35, 97-101.	1.7	13
113	Optical Microbubble Resonators with High Refractive Index Inner Coating for Bio-Sensing Applications: An Analytical Approach. Sensors, 2016, 16, 1992.	2.1	13
114	Rare-earth activated SnO2 photoluminescent thin films on flexible glass: Synthesis, deposition and characterization. Optical Materials, 2022, 124, 111978.	1.7	13
115	Sol - gel glasses for nonlinear optics. Journal of Optics, 1996, 5, 655-666.	0.5	12
116	Erbium-activated monolithic silica xerogels and silica-titania planar waveguides: optical and spectroscopic characterization. , 2001, , .		12
117	Laser irradiation, ion implantation, and e-beam writing of integrated optical structures. , 2005, , .		12
118	Fabrication and direct bonding of photosensitive multicomponent silicate glasses for lossless planar waveguide splitters. Journal of Non-Crystalline Solids, 2008, 354, 1230-1234.	1.5	12
119	Mid-Range Structure of Niobium–Sodium–Phosphate Electro-Optic Glasses. Journal of Physical Chemistry B, 2013, 117, 1444-1450.	1.2	12
120	New yellowish-green light emitting thin film: 89Al2O3â‹5CeCl3â‹3EuCl3â‹3TbCl3. Optical Materials, 2013, 3 1304-1308.	³⁵ 1.7	12
121	Li+ co-doping effect on the photoluminescence time decay behavior of Y2O3:Er3+ films. Journal of Luminescence, 2014, 154, 106-110.	1.5	12
122	SiO 2 -P 2 O 5 -HfO 2 -Al 2 O 3 -Na 2 O glasses activated by Er 3+ ions: From bulk sample to planar waveguide fabricated by rf-sputtering. Optical Materials, 2017, 63, 153-157.	1.7	12
123	Characterization of erbium doped lithium niobate crystals and waveguides. Optical Materials, 2006, 28, 1292-1295.	1.7	11
124	Rare-earth-doped glasses and ion-exchanged integrated optical amplifiers and lasers. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2002, 82, 721-734.	0.6	10
125	Local Site Distribution of Oxygen in Silicon-Rich Oxide Thin Films: A Tool to Investigate Phase Separation. Journal of Physical Chemistry C, 2012, 116, 10039-10047.	1.5	10
126	Ag-Sensitized Yb3+ Emission in Glass-Ceramics. Micromachines, 2018, 9, 380.	1.4	10

#	Article	IF	CITATIONS
127	Ag-Sensitized NIR-Emitting Yb3+-Doped Glass-Ceramics. Applied Sciences (Switzerland), 2020, 10, 2184.	1.3	10
128	Erbium-activated silica-titania planar waveguides prepared by rf-sputtering. , 2001, , .		9
129	Er3+-activated sol–gel silica confined structures for photonic applications. Optical Materials, 2009, 31, 1275-1279.	1.7	9
130	Ag-sensitized Tb3+/Yb3+ codoped silica-zirconia glasses and glass-ceramics: Systematic and detailed investigation of the broadband energy-transfer and downconversion processes. Ceramics International, 2021, 47, 17939-17949.	2.3	9
131	Sol-gel erbium-doped silica-hafnia planar and channel waveguides. , 2003, , .		8
132	Optical feedback on whispering gallery mode laser: wavelength shifts in erbium-doped microspherical laser. , 2004, 5451, 199.		8
133	Towards a more accurate refractive index profile of ion-exchanged waveguides. Thin Solid Films, 2004, 460, 206-210.	0.8	8
134	Structural characterization of Cd(Se, S)-doped glasses. Journal of Non-Crystalline Solids, 1992, 142, 63-69.	1.5	7
135	<title>Testing of optical waveguides (TOW) cooperative project: preliminary results of the characterization of k-exchanged waveguides</title> . , 1994, , .		7
136	Modeling and near-field measurements of strip-loaded Er-doped sol-gel waveguides. , 1996, , .		7
137	<title>Microsphere laser in Er<formula>^{<roman>3+</roman>}</formula>-doped oxide glasses</title> . , 2004, , .		7
138	The effect of Ca2+, Mg2+, and Zn2+on optical properties of Er3+doped silicate glass. , 2005, , .		7
139	Rare-earth-doped silica-based glasses for photonic applications. Journal of Non-Crystalline Solids, 2007, 353, 753-756.	1.5	7
140	About the Implementation of Frequency Conversion Processes in Solar Cell Device Simulations. Micromachines, 2018, 9, 435.	1.4	7
141	Design, fabrication and assessment of an optomechanical sensor for pressure and vibration detection using flexible glass multilayers. Optical Materials, 2021, 115, 111023.	1.7	7
142	Integrated Optical Components Fabricated By Two-Step Ion-Exchange. Proceedings of SPIE, 1989, , .	0.8	6
143	Semiconductor doped glasses: structural and waveguide characterization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1991, 9, 397-403.	1.7	6
144	Improved scalar analysis of integrated optical structures by the mapped Galerkin method and Arnoldi iteration. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 966.	0.8	6

#	Article	IF	CITATIONS
145	Ion-exchanged planar waveguides in different Er3+-doped tellurite glasses. , 2003, , .		6
146	Microsphere laser in Er3+/Yb3+-codoped phosphate glass: coupling with an external cavity. , 2004, , .		6
147	Fabrication and characterization of optical planar waveguides activated by erbium ions for 1.5-μm applications. , 2004, 5451, 574.		6
148	Spectroscopic assessment of rare-earth activated planar waveguides and microcavities. Applied Surface Science, 2005, 248, 3-7.	3.1	6
149	Diagnostic techniques for photonic materials based on Raman and Brillouin spectroscopies. Optoelectronics Letters, 2007, 3, 188-191.	0.4	6
150	Terahertz flexible waveguides: an overview. Proceedings of SPIE, 2009, , .	0.8	6
151	Photonic properties and applications of glass micro―and nanospheres. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 898-903.	0.8	6
152	Erbium doped silicaâ€hafnia glass ceramic waveguides. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2875-2879.	0.8	6
153	Surface characterization of thin silicon-rich oxide films. Journal of Molecular Structure, 2011, 993, 214-218.	1.8	6
154	Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations. Sensors, 2016, 16, 1405.	2.1	6
155	Active and Quantum Integrated Photonic Elements by Ion Exchange in Glass. Applied Sciences (Switzerland), 2021, 11, 5222.	1.3	6
156	Optical Fibres For Medical Applications : Output Beam Shaping. Proceedings of SPIE, 1985, , .	0.8	5
157	Scalar analysis of general dielectric waveguides by Fourier decomposition method. Journal of Lightwave Technology, 1999, 17, 362-368.	2.7	5
158	Realisation and characterisation of LiF/NaF thin film planar waveguides. Thin Solid Films, 2000, 358, 191-195.	0.8	5
159	Er3+/Yb3+-codoped silica–germania sputtered films: structural and spectroscopic characterization. Journal of Non-Crystalline Solids, 2006, 352, 2585-2588.	1.5	5
160	Er3+-activated silica inverse opals synthesized by the solgel method. Optoelectronics Letters, 2007, 3, 184-187.	0.4	5
161	Structural investigation of photonic materials at the nanolevel using XPS. Journal of Non-Crystalline Solids, 2009, 355, 1157-1159.	1.5	5
162	Spatially localized UV-induced crystallization of SnO 2 in photorefractive SiO 2 -SnO 2 thin film. Proceedings of SPIE, 2010, , .	0.8	5

#	Article	IF	CITATIONS
163	Rare-earth doped materials for optical waveguides. , 2015, , .		5
164	Glass-based 1-D dielectric microcavities. Optical Materials, 2016, 61, 11-14.	1.7	5
165	Two photon versus one photon fluorescence excitation in whispering gallery mode microresonators. Journal of Luminescence, 2016, 170, 860-865.	1.5	5
166	THz Pyro-Optical Detector Based on LiNbO3 Whispering Gallery Mode Microdisc Resonator. Sensors, 2017, 17, 258.	2.1	5
167	Glass ceramics for frequency conversion. , 2020, , 391-414.		5
168	Sol-gel-derived transparent glass-ceramics for photonics. Optical Materials, 2022, 130, 112577.	1.7	5
169	KOR negative photoresist in integrated optics. Optical and Quantum Electronics, 1975, 7, 447-450.	1.5	4
170	<title>Microlens - Ended Fibres: A New Fabrication Technique</title> . Proceedings of SPIE, 1984, , .	0.8	4
171	Axially - And Side - Radiating Optical Fibres For Medical Applications. Proceedings of SPIE, 1985, , .	0.8	4
172	Analysis of modal coupling between glassy and liquid crystal planar waveguides. , 1996, , .		4
173	Passive and active optical waveguides in LiF thin films. , 1998, 3278, 132.		4
174	Experimental results of transparent, reflective and absorbing properties of some building materials. Energy and Buildings, 2001, 33, 563-568.	3.1	4
175	Modelling of diffractive structures in photorefractive Er/Yb–co-doped glass waveguides. Optics and Lasers in Engineering, 2003, 39, 333-344.	2.0	4
176	Brillouin scattering in planar waveguides. II. Experiments. Journal of Applied Physics, 2003, 94, 4882.	1.1	4
177	Reproducibility of splicer-based long-period fiber gratings for gain equalization. Optoelectronics Letters, 2007, 3, 203-206.	0.4	4
178	Radio-frequency interrogation of a fiber Bragg grating sensor in the configuration of a fiber laser with external cavities. Optik, 2010, 121, 2040-2043.	1.4	4
179	Rare-earth phosphors for the control of WLED's colour output: State of the art. , 2014, , .		4
180	Photonic glass-ceramics: consolidated outcomes and prospects. , 2015, , .		4

#	Article	IF	CITATIONS
181	Low-Threshold Coherent Emission at 1.5 µm from Fully Er3+ Doped Monolithic 1D Dielectric Microcavity Fabricated Using Radio Frequency Sputtering. Ceramics, 2019, 2, 74-85.	1.0	4
182	SiO2-SnO2 transparent glass-ceramics activated by rare earth ions. , 2019, , .		4
183	<title>Signal Processing in Integrated Optics Employing Geodesic Lenses</title> . Proceedings of SPIE, 1979, 0164, 20.	0.8	3
184	Demultiplexing and tapping device using a spherical geodesic lens. Optics Communications, 1985, 54, 87-90.	1.0	3
185	Experimental Results on the Light Propagation in a Nonlinear Waveguide with Nematic Liquid Crystal: Hybrid Alignment Case. Molecular Crystals and Liquid Crystals, 1995, 266, 269-276.	0.3	3
186	Design and numerical analysis of a silica-on-silicon integrated optical duplexer. , 1996, 2954, 88.		3
187	Testing of active optical waveguides obtained by diluted silver exchange in Er-doped soda lime silicate glass. , 1998, 3280, 105.		3
188	Optical and spectroscopic characterization of Er/Yb-activated planar waveguides. , 2000, , .		3
189	Er3+/Yb3+-codoped soda-lime silicate glasses: a case study. , 2004, 5350, 140.		3
190	Optical spectroscopy of Er3+ and Ce3+-codoped TeO 2 -WO 3 -Na 2 O glasses. , 2004, , .		3
191	Glass-ceramics coating of silica microspheres. , 2009, , .		3
192	Micro resonator stabilization by thin film coating. , 2009, , .		3
193	Opal-Type Photonic Crystals: Fabrication and Application. Advances in Science and Technology, 0, , .	0.2	3
194	Soda-zinc-aluminosilicate glasses doped with Tb3+, Ce3+, and Sm3+for frequency conversion and white light generation. , 2011, , .		3
195	Rare-earth-activated glasses for solar energy conversion. , 2011, , .		3
196	Whispering Gallery Mode Microresonators for Biosensing. Advances in Science and Technology, 0, , .	0.2	3
197	M-line spectroscopic, spectroscopic ellipsometric and microscopic measurements of optical waveguides fabricated by MeV-energy N+ ion irradiation for telecom applications. Thin Solid Films, 2013, 541, 3-8.	0.8	3

198 Glass-ceramics for photonics: Advances and perspectives. , 2014, , .

2

#	Article	IF	CITATIONS
199	Optical properties of one-dimensional disordered multilayer photonic structures. , 2015, , .		3
200	SiO2-SnO2:Er3+ planar waveguides: Highly photorefractive glass-ceramics. Optical Materials: X, 2020, 7, 100056.	0.3	3
201	Active Sol-Gel Materials, Fluorescence Spectra, and Lifetimes. , 2016, , 1-43.		3
202	Flexible photonics: RF-sputtering fabrication of glass-based systems operating under mechanical deformation conditions. , 2020, , .		3
203	Multielement Homogeneous Thin-Film Lens Design. , 1987, , .		2
204	Modal-coupling optimization of integrated optical devices in LiNbO 3. , 1990, , .		2
205	Waveguide Fresnel Lenses For Integrated Optical Processors. , 1990, , .		2
206	<title>Integrated optical directional couplers: how effective are design and modeling for device production?</title> ., 1997, 2997, 212.		2
207	<title>Germania sol-gel waveguides for optical amplifiers</title> . , 2000, , .		2
208	Graded-index profile analysis from M-line, optical polarimetry, and EDS measurements of glass waveguides produced by K+/Ag+ion-exchange combinations. , 2002, , .		2
209	Fabrication by rf-sputtering processing of Er3+/Yb3+-codoped silica-titania planar waveguides. , 2003, , .		2
210	Niobium phosphate glasses doped with rare earths. , 2003, , .		2
211	Erbium/Ytterbium-activated silica-titania planar and channel waveguides prepared by rf-sputtering. , 2003, , .		2
212	Confocal luminescence microscopy characterization of optical waveguides produced by ion beam irradiation on LiF. , 2003, , .		2
213	Photonics Devices Based on Hybrid Approach Combining Liquid Crystals and Sol-Gel Waveguides. Fiber and Integrated Optics, 2006, 25, 175-194.	1.7	2
214	Design of rare-earth doped chalcogenide microspheres for mid-IR optical amplification. Proceedings of SPIE, 2012, , .	0.8	2
215	Preface: Photoluminescence in rare earths: Photonic materials and devices. Optical Materials, 2013, 35, 1877-1878.	1.7	2

216 Glass and glass-ceramic photonic systems. , 2017, , .

#	Article	IF	CITATIONS
217	<title>Aspherics In Integrated Optics</title> ., 1981, 0235, 27.		1
218	Passive Integrated Optical Components. Journal of Modern Optics, 1988, 35, 847-848.	0.6	1
219	<title>Ion-exchanged waveguides in semiconductor-doped glasses</title> . , 1991, , .		1
220	<title>Buried waveguides fabricated by a purely thermal ion back diffusion in glass and assisted by electric field: a new model</title> . , 1994, , .		1
221	<title>Twenty-five years of integrated optics: where we are and where we will go</title> . , 1994, 2212, 2.		1
222	Modal analysis of waveguide elements fabricated by postannealing processes. , 1996, , .		1
223	Birefringence determination in ion-exchanged waveguides. , 1996, , .		1
224	<title>Erbium-doped glass waveguides for integrated optical amplifiers and lasers</title> . , 1998, , .		1
225	Integrated electro-optical switch based on nematic liquid crystal. , 1998, , .		1
226	Thermo-optical effects and fiber optic sensing device based on polymer dispersed liquid crystals. , 2001, 4277, 403.		1
227	Leaky modes in lithium fluoride thick films thermally evaporated on glass. Optics Communications, 2003, 217, 249-256.	1.0	1
228	Fabrication and characterization of optical waveguides on LiF by ion beam irradiation. , 2003, , .		1
229	Erbium-activate HfO 2 -based waveguides for photonics. , 2003, 4829, 89.		1
230	Amplified spontaneous emission in e-beam induced LiF:F2 waveguides. , 2003, 4829, 703.		1
231	Photoluminescence Spectroscopy of Er3+/Yb3+ Co-Activated Silica-Alumina Monolithic Xerogels. Journal of Sol-Gel Science and Technology, 2004, 32, 267-271.	1.1	1
232	Fiber optic nanoprobes for biological sensing. Proceedings of SPIE, 2011, , .	0.8	1
233	High quality factor dielectric multilayer structures fabricated by rf-sputtering. Proceedings of SPIE, 2012, , .	0.8	1
234	Spherical resonators coated by glass and glass-ceramic films. Proceedings of SPIE, 2012, , .	0.8	1

#	Article	IF	CITATIONS
235	Neuronal rat cell imaging using a new UV-extended supercontinuum source. Proceedings of SPIE, 2012, , .	0.8	1
236	Non-linear fluorescence excitation of Rhodamine 6G and TRITC labeled IgG in whispering gallery mode microresonators. Proceedings of SPIE, 2015, , .	0.8	1
237	Glass-ceramics for photonics: Laser material processing. , 2015, , .		1
238	Characterization of Sol-Gel Thin-Film Waveguides. , 2016, , 1-29.		1
239	Stimulated Stokes and Antistokes Raman Scattering in Microspherical Whispering Gallery Mode Resonators. Journal of Visualized Experiments, 2016, , e53938.	0.2	1
240	Advancement of Glass-Ceramic Materials for Photonic Applications. , 2017, , 133-155.		1
241	Photoluminescence of antimony-germanate-silicate glass doped with europium ions and silver nanoparticles. , 2017, , .		1
242	SiO2-SnO2 Photonic Glass-Ceramics. , 2019, , .		1
243	Editorial for the Special Issue on Glassy Materials Based Microdevices. Micromachines, 2019, 10, 39.	1.4	1
244	Modification of the Nearâ€Infrared Spontaneous Emission in Er ³⁺ â€Activated Inverse Silica Opals. Physica Status Solidi (B): Basic Research, 2020, 257, 1900476.	0.7	1
245	Role of Ag multimers as broadband sensitizers in Tb3+/Yb3+ co-doped glass-ceramics. , 2018, , .		1
246	Integrated Optical Sensors: State-Of-The-Art And Perspectives. Proceedings of SPIE, 1988, , .	0.8	1
247	SiO2-SnO2:Er3+ transparent glass-ceramics: fabrication and photonic assessment. , 2018, , .		1
248	Search for Multi-Coincidence Cosmic Ray Events over Large Distances with the EEE MRPC Telescopes. J, 2021, 4, 838-848.	0.6	1
249	Novel Thin-Film Lenses For Integrated Optics. Proceedings of SPIE, 1987, , .	0.8	0
250	Design Of Acircular Refractive Lenses For Integrated Optical Circuits. Proceedings of SPIE, 1987, , .	0.8	0
251	Homogeneous thin film lens on LiNbO 3. , 1991, 1362, 899.		0
252	GRIN'91: gradient-index optical systems. Applied Optics, 1992, 31, 5157.	2.1	0

#	Article	IF	CITATIONS
253	<title>Waveguide Fresnel lens with multiple phase shifts</title> . , 1994, , .		Ο
254	<title>Transversally multimodal 1x4 branch coupler in glass: experimental characterization and BPM</title> . , 1994, 2212, 539.		0
255	Experimental evidence of the Coulomb interaction effects in CdS 1-x Se x quantum dots. , 1995, , .		0
256	Optical phonons and electron-phonon coupling in CdS x Se 1-x quantum dots. , 1995, , .		0
257	Characterization of ion-exchanged waveguides in different glasses. , 1996, , .		0
258	Analysis of step- and graded-index optical waveguides by solving Helmholtz eigenproblem through Fourier analysis and iterative Lanczos reduction. , 1998, 3278, 37.		0
259	<title>Integrated optical switches using liquid crystal cells</title> . , 1998, , .		0
260	Experimental Results on a New Integrated Beam Deflector/Switch Based on Liquid Crystals. Molecular Crystals and Liquid Crystals, 1999, 331, 189-199.	0.3	0
261	Characterization of the near-surface region in ion-exchanged glass waveguides. , 2001, 4277, 99.		0
262	Design of an integrated optical preprocessor for remote sensing applications. , 2001, 4277, 315.		0
263	<title>In search of highly effective modeling tools for the CAD of photonic devices and components</title> . , 2001, , .		0
264	On a novel mode-solver and beam propagation method based on Galerkin approach and Arnoldi iteration technique. Optical and Quantum Electronics, 2002, 34, 559-575.	1.5	0
265	Title is missing!. Optical and Quantum Electronics, 2002, 34, 559-575.	1.5	0
266	Advances in Optical Waveguide Engineering. Optical Engineering, 2003, 42, 2798.	0.5	0
267	Electro-optical switch based on a Bragg grating in a liquid crystal waveguide. , 2003, 4829, 522.		0
268	Transparent Er3+-activated lead fluorogermanate glass ceramics. , 2003, , .		0
269	Simple method to estimate the radiative lifetime of4I 13/24I 15/2 transition of Er3+in transparent materials. , 2003, 4829, 145.		0
270	Selected papers from ICO XIX. Journal of Optics, 2003, 5, S117-S118.	1.5	0

#	Article	IF	CITATIONS
271	Enhanced spectroscopic properties at 1.5 μm in Er3+/Yb3+-activated silica-titania planar waveguides fabricated by rf-sputtering. , 2003, 4829, 87.		0
272	Spectroscopic properties of Er3+-activated Ag-exchanged silicate and phosphate glasses. , 2005, , .		0
273	Assessment of nanocomposite photonic systems with the X-ray photoelectron spectroscopy. Optoelectronics Letters, 2007, 3, 192-194.	0.4	0
274	Challenging nano-scale stress evaluation in glassy and crystalline semiconductor heterostructures. Proceedings of SPIE, 2008, , .	0.8	0
275	Coherent white light confocal fluorescence imaging and fluorescence lifetime imaging microscopy. Proceedings of SPIE, 2009, , .	0.8	Ο
276	Er3+-activated nanocomposite photonic glasses and confined structures. Optical Materials, 2009, 31, 1071-1074.	1.7	0
277	Special Section Guest Editorial: Integrated Optics. Optical Engineering, 2011, 50, 071101.	0.5	0
278	Whispering gallery modes in coated silica microspheres. Proceedings of SPIE, 2012, , .	0.8	0
279	Glass-Based Sub-Wavelength Photonic Structures. , 2013, , .		0
280	Tailored spectroscopic and optical properties in rare earth-activated glass-ceramics planar waveguides. , 2013, , .		0
281	RF-sputtering derived dielectric 1-D photonic crystal activated with Er3+ ions. , 2014, , .		Ο
282	Multicolour emission in silica whispering gallery mode microspherical resonators. , 2014, , .		0
283	Coated spherical microresonators for cutting-edge photonics application. , 2014, , .		Ο
284	Hyperspectral (fluorescence lifetime) imaging based on a UV-VIS enhanced supercontinuum source using high-order mode propagation. , 2014, , .		0
285	Microbubble resonators as enhancement platforms for linear and nonlinear applications. Proceedings of SPIE, 2015, , .	0.8	Ο
286	A proposal for a nanosatellite for cosmic ray detection. , 2016, , .		0
287	Tailoring the optical properties of one-dimensional (1D) photonic structures. , 2017, , .		0
288	Editorial for the Special Issue on Nonlinear Photonics Devices. Micromachines, 2020, 11, 760.	1.4	0

#	Article	IF	CITATIONS
289	PhoXonic Whispering Gallery Mode Resonators: parametrical optomechanic oscillations and its applications. , 2021, , .		0
290	Thermo-Optical Effects and Fiber Optic Sensing Device Based on Polymer Dispersed Liquid Crystals. Fiber and Integrated Optics, 2003, 22, 1-12.	1.7	0
291	Effect of glass composition on the properties of Er/Yb-doped SiO 2 -GeO 2 -B 2 O 3 -Na 2 O glasses for active waveguide application. , 2003, , .		0
292	Whispering gallery modes in simply made glass microspheres. , 2003, , .		0
293	Intermodal Beating Frequencies in a Fiber Laser with an External Cavity: Sensor Applications. Journal of Holography and Speckle, 2009, 5, 294-298.	0.1	0
294	Fabrication and Spectroscopic Assessment of Glass-Based Sub-Wavelength Structures for Hybrid 1-D Dielectric 633-nm Laser Microcavity. , 2014, , .		0
295	Finite difference mode solver for active optical waveguides. , 1998, , .		0
296	Glass-based confined structures enabling light control. AIP Conference Proceedings, 2015, , .	0.3	0
297	Nonlinear Microcavities: from rainbow lasers to frequency combs. , 2016, , .		0
298	Nonlinear effects in ultrahigh Q optical resonators. , 2016, , .		0
299	Characterization of Sol-Gel Thin-Film Waveguides. , 2018, , 1565-1593.		0
300	Active Sol-Gel Materials, Fluorescence Spectra, and Lifetimes. , 2018, , 1607-1649.		0
301	Spectroscopic properties of rare earth doped germanate glasses. , 2018, , .		0
302	Fabrication by rf-sputtering and assessment of dielectric Er3+ doped monolithic 1-D microcavity for coherent emission at 1.5 um. , 2018, , .		0
303	Class-based microresonators. , 2018, , .		0
304	Cavity-ringdown-spectroscopy-based study of high Q resonators in add-drop configuration. , 2019, , .		0
305	Enhancement, Suppression and Chaotic Behavior in Optomechanical Oscillations in Hollow Resonators. , 2020, , .		0
306	Enhanced photorefractivity and rare-earth photoluminescence in SnO2 nanocrystals-based photonic glass-ceramics. EPJ Web of Conferences, 2021, 255, 05001.	0.1	0