Nivedita Chatterjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5305784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A systems toxicology approach to the surface functionality control of graphene–cell interactions. Biomaterials, 2014, 35, 1109-1127.	5.7	239
2	Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions. Toxicology Letters, 2014, 229, 311-318.	0.4	74
3	Potential Toxicity of Differential Functionalized Multiwalled Carbon Nanotubes (MWCNT) in Human Cell Line (BEAS2B) and <i>Caenorhabditis elegans</i> . Journal of Toxicology and Environmental Health - Part A: Current Issues, 2014, 77, 1399-1408.	1.1	68
4	Effects of silver nanoparticles on oxidative DNA damage–repair as a function of p38 MAPK status: A comparative approach using human Jurkat T cells and the nematode <i>Caenorhabditis elegans</i> . Environmental and Molecular Mutagenesis, 2014, 55, 122-133.	0.9	56
5	A systems toxicology approach reveals the Wnt-MAPK crosstalk pathway mediated reproductive failure in <i>Caenorhabditis elegans</i> exposed to graphene oxide (GO) but not to reduced graphene oxide (rGO). Nanotoxicology, 2017, 11, 76-86.	1.6	54
6	Isolation and identification of Profenofos degrading bacteria. Brazilian Journal of Microbiology, 2009, 40, 893-900.	0.8	47
7	Differential genotoxic and epigenotoxic effects of graphene family nanomaterials (GFNs) in human bronchial epithelial cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2016, 798-799, 1-10.	0.9	45
8	Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems. Environmental Health and Toxicology, 2015, 30, e2015007.	1.8	44
9	Isolation and characterization of a profenofos degrading bacterium. Journal of Environmental Sciences, 2009, 21, 1591-1597.	3.2	40
10	A micro-sized model for the in vivo study of nanoparticle toxicity: what has Caenorhabditis elegans taught us?. Environmental Chemistry, 2014, 11, 227.	0.7	39
11	Diameter size and aspect ratio as critical determinants of uptake, stress response, global metabolomics and epigenetic alterations in multi-wall carbon nanotubes. Carbon, 2016, 108, 529-540.	5.4	38
12	A systems toxicology approach on the mechanism of uptake and toxicity of MWCNT in Caenorhabditis elegans. Chemico-Biological Interactions, 2015, 239, 153-163.	1.7	35
13	Differential crosstalk between global DNA methylation and metabolomics associated with cell type specific stress response by pristine and functionalized MWCNT. Biomaterials, 2017, 115, 167-180.	5.7	31
14	Developing adverse outcome pathways on silver nanoparticle-induced reproductive toxicity via oxidative stress in the nematode <i>Caenorhabditis elegans</i> using a Bayesian network model. Nanotoxicology, 2018, 12, 1182-1197.	1.6	29
15	Toxic potentiality of bio-oils, from biomass pyrolysis, in cultured cells and <i>Caenorhabditis elegans</i> . Environmental Toxicology, 2014, 29, 1409-1419.	2.1	25
16	Global metabolomics approach in in vitro and in vivo models reveals hepatic glutathione depletion induced by amorphous silica nanoparticles. Chemico-Biological Interactions, 2018, 293, 100-106.	1.7	25
17	Histone methylation-associated transgenerational inheritance of reproductive defects in Caenorhabditis elegans exposed to crude oil under various exposure scenarios. Chemosphere, 2018, 200, 358-365.	4.2	22
18	Genetic, epigenetic, and developmental toxicity of Chironomus riparius raised in metal-contaminated field sediments: A multi-generational study with arsenic as a second challenge. Science of the Total Environment, 2019, 672, 789-797.	3.9	22

NIVEDITA CHATTERJEE

#	Article	IF	CITATIONS
19	JAK/STAT and TGF-ß activation as potential adverse outcome pathway of TiO2NPs phototoxicity in Caenorhabditis elegans. Scientific Reports, 2017, 7, 17833.	1.6	21
20	Epigenetic profiling to environmental stressors in model and non-model organisms: Ecotoxicology perspective. Environmental Health and Toxicology, 2018, 33, e2018015.	1.8	21
21	Integrated approach of eco-epigenetics and eco-metabolomics on the stress response of bisphenol-A exposure in the aquatic midge Chironomus riparius. Ecotoxicology and Environmental Safety, 2018, 163, 111-116.	2.9	20
22	Multi-generational impacts of organic contaminated stream water on Daphnia magna: A combined proteomics, epigenetics and ecotoxicity approach. Environmental Pollution, 2019, 249, 217-224.	3.7	20
23	Kinetics of oxidation of Cr(III)-organic complexes by H ₂ O ₂ . Chemical Speciation and Bioavailability, 2010, 22, 25-34.	2.0	16
24	Cr-(III)-organic compounds treatment causes genotoxicity and changes in DNA and protein level in Saccharomyces cerevisiae. Ecotoxicology, 2010, 19, 593-603.	1.1	14
25	Development of the transcriptome for a sediment ecotoxicological model species, Chironomus dilutus. Chemosphere, 2020, 244, 125541.	4.2	13
26	Critical window of exposure of CMIT/MIT with respect to developmental effects on zebrafish embryos: Multi-level endpoint and proteomics analysis. Environmental Pollution, 2021, 268, 115784.	3.7	13
27	Amorphous silica nanoparticle-induced perturbation of cholesterol homeostasis as a function of surface area highlights safe-by-design implementation: an integrated multi-OMICS analysis. RSC Advances, 2016, 6, 68606-68614.	1.7	10
28	Nanosafety: An Evolving Concept to Bring the Safest Possible Nanomaterials to Society and Environment. Nanomaterials, 2022, 12, 1810.	1.9	9
29	Immune and xenobiotic response crosstalk to chemical exposure by PA01 infection in the nematode Caenorhabditis elegans. Chemosphere, 2018, 210, 1082-1090.	4.2	5
30	Endoplasmic reticulum stress mediated apoptosis via JNK in MWCNT-exposed <i>in vitro</i> systems: size, surface functionalization and cell type specificity. Journal of Toxicological Sciences, 2020, 45, 305-317.	0.7	5
31	Uptake and distribution of chromium in <i>Saccharomyces cerevisae</i> exposed to Cr(III)-organic compounds. Chemical Speciation and Bioavailability, 2009, 21, 245-255.	2.0	4
32	Activation of the nucleotide excision repair pathway by crude oil exposure: A translational study from model organisms to the Hebei Spirit Oil Spill Cohort. Environmental Pollution, 2019, 254, 112997.	3.7	3
33	Cross-sectional and longitudinal associations between global DNA (hydroxy) methylation and exposure biomarkers of the Hebei Spirit oil spill cohort in Taean, Korea. Environmental Pollution, 2020, 263, 114607.	3.7	3
34	Effect of two different Cr-(III)-organic compounds exposure toSaccharomyces cerevisiae. Toxicological and Environmental Chemistry, 2010, 92, 75-88.	0.6	2
35	Exposure-response of Cr(III)-organic complexes to Saccharomyces cerevisiae. Frontiers of Environmental Science and Engineering in China, 2010, 4, 196-202.	0.8	1
36	Effects of Cr(III) organic compounds on <i>Lactobacillus plantarum</i> . Toxicological and Environmental Chemistry, 2010, 92, 1565-1575.	0.6	0

#	Article	IF	CITATIONS
37	CRISPR approach in environmental chemical screening focusing on population variability. Journal of Toxicological Sciences, 2021, 46, 499-507.	0.7	0