Michael W Duffel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5305455/publications.pdf

Version: 2024-02-01

88 papers 2,318 citations

201385 27 h-index 253896 43 g-index

92 all docs 92 docs citations 92 times ranked $\begin{array}{c} 1452 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Metabolism and metabolites of polychlorinated biphenyls. Critical Reviews in Toxicology, 2015, 45, 245-272.	1.9	321
2	Sulfated Metabolites of Polychlorinated Biphenyls Are High-Affinity Ligands for the Thyroid Hormone Transport Protein Transthyretin. Environmental Health Perspectives, 2013, 121, 657-662.	2.8	92
3	Enzymatic aspects of the phenol (aryl) sulfotransferases*. Drug Metabolism Reviews, 2001, 33, 369-395.	1.5	87
4	[24] Aryl sulfotransferases. Methods in Enzymology, 1981, 77, 197-206.	0.4	79
5	Hydroxylated Polychlorinated Biphenyls Are Substrates and Inhibitors of Human Hydroxysteroid Sulfotransferase SULT2A1. Chemical Research in Toxicology, 2006, 19, 1420-1425.	1.7	78
6	Sulfation of alpha-hydroxytamoxifen catalyzed by human hydroxysteroid sulfotransferase results in tamoxifen-DNA adducts. Carcinogenesis, 1998, 19, 2007-2011.	1.3	70
7	Identification of Sulfated Metabolites of 4-Chlorobiphenyl (PCB3) in the Serum and Urine of Male Rats. Chemical Research in Toxicology, 2012, 25, 2796-2804.	1.7	66
8	Comparative Analyses of the 12 Most Abundant PCB Congeners Detected in Human Maternal Serum for Activity at the Thyroid Hormone Receptor and Ryanodine Receptor. Environmental Science & Emp; Technology, 2019, 53, 3948-3958.	4.6	60
9	2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) Is Enantioselectively Oxidized to Hydroxylated Metabolites b Rat Liver Microsomes. Chemical Research in Toxicology, 2011, 24, 2249-2257.	y _{1.7}	57
10	Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs). Environmental Science and Pollution Research, 2018, 25, 16277-16290.	2.7	55
11	Structure–Activity Relationships for Hydroxylated Polychlorinated Biphenyls As Inhibitors of the Sulfation of Dehydroepiandrosterone Catalyzed by Human Hydroxysteroid Sulfotransferase SULT2A1. Chemical Research in Toxicology, 2011, 24, 1720-1728.	1.7	50
12	N-Substituted sulfonamide carbonic anhydrase inhibitors with topical effects on intraocular pressure. Journal of Medicinal Chemistry, 1986, 29, 1488-1494.	2.9	49
13	Gas Chromatographic Analysis with Chiral Cyclodextrin Phases Reveals the Enantioselective Formation of Hydroxylated Polychlorinated Biphenyls by Rat Liver Microsomes. Environmental Science & Environ	4.6	47
14	Structure-Activity Relationships for Hydroxylated Polychlorinated Biphenyls as Substrates and Inhibitors of Rat Sulfotransferases and Modification of These Relationships by Changes in Thiol Status. Drug Metabolism and Disposition, 2009, 37, 1065-1072.	1.7	41
15	Substrate inhibition in human hydroxysteroid sulfotransferase SULT2A1: Studies on the formation of catalytically non-productive enzyme complexes. Archives of Biochemistry and Biophysics, 2011, 507, 232-240.	1.4	41
16	Sulfation of Lower Chlorinated Polychlorinated Biphenyls Increases Their Affinity for the Major Drug-Binding Sites of Human Serum Albumin. Environmental Science & Eamp; Technology, 2016, 50, 5320-5327.	4.6	40
17	Oxidation of Polychlorinated Biphenyls by Liver Tissue Slices from Phenobarbital-Pretreated Mice Is Congener-Specific and Atropselective. Chemical Research in Toxicology, 2013, 26, 1642-1651.	1.7	39
18	Assay of purified aryl sulfotransferase suitable for reactions yielding unstable sulfuric acid esters. Analytical Biochemistry, 1989, 183, 320-324.	1.1	38

#	Article	IF	CITATIONS
19	Tyrosine-ester sulfotransferase from rat liver: Bacterial expression and identification. Protein Expression and Purification, 1992, 3, 421-426.	0.6	38
20	An efficient approach to sulfate metabolites of polychlorinated biphenyls. Environment International, 2010, 36, 843-848.	4.8	38
21	Tissue Distribution, Metabolism, and Excretion of 3,3′-Dichloro-4′-sulfooxy-biphenyl in the Rat. Environmental Science & Technology, 2015, 49, 8087-8095.	4.6	38
22	Metabolism of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) atropisomers in tissue slices from phenobarbital or dexamethasone-induced rats is sex-dependent. Xenobiotica, 2013, 43, 933-947.	0.5	37
23	Identification of a sulfate metabolite of PCB 11 in human serum. Environment International, 2017, 98, 120-128.	4.8	35
24	Benzylic alcohols as stereospecific substrates and inhibitors for aryl sulfotransferase. Chirality, 1991, 3, 104-111.	1.3	33
25	Synthesis of Sterically Hindered Polychlorinated Biphenyl Derivatives. Synthesis, 2011, 2011, 1045-1054.	1.2	32
26	FORMATION OF TAMOXIFEN-DNA ADDUCTS VIA O-SULFONATION, NOT O-ACETYLATION, OF α-HYDROXYTAMOXIFEN IN RAT AND HUMAN LIVERS. Drug Metabolism and Disposition, 2005, 33, 1673-1678.	1.7	29
27	Hydroxylated and sulfated metabolites of commonly observed airborne polychlorinated biphenyls display selective uptake and toxicity in N27, SH-SY5Y, and HepG2 cells. Environmental Toxicology and Pharmacology, 2018, 62, 69-78.	2.0	28
28	Pentachlorophenol and Other Chlorinated Phenols Are Substrates for Human Hydroxysteroid Sulfotransferase hSULT2A1. Chemical Research in Toxicology, 2008, 21, 1503-1508.	1.7	27
29	Influence of Substrate Structure on the Catalytic Efficiency of Hydroxysteroid Sulfotransferase STa in the Sulfation of Alcohols. Chemical Research in Toxicology, 1996, 9, 67-74.	1.7	26
30	INTERACTIONS OF THE STEREOISOMERS OF \hat{l}_{\pm} -HYDROXYTAMOXIFEN WITH HUMAN HYDROXYSTEROID SULFOTRANSFERASE SULT2A1 AND RAT HYDROXYSTEROID SULFOTRANSFERASE STA. Drug Metabolism and Disposition, 2004, 32, 1501-1508.	1.7	25
31	One-Electron Oxidation of Vindoline and 16-O-Acetylvindoline Catalyzed by Peroxidase. Journal of Medicinal Chemistry, 1985, 28, 629-633.	2.9	24
32	Vinblastine and vincristine are inhibitors of monoamine oxidase B. Journal of Medicinal Chemistry, 1990, 33, 1845-1848.	2.9	22
33	Oxidations of Vincristine Catalyzed by Peroxidase and Ceruloplasmin. Journal of Natural Products, 1997, 60, 1125-1129.	1.5	22
34	Oxidation of 4-Chlorobiphenyl Metabolites to Electrophilic Species by Prostaglandin H Synthase. Chemical Research in Toxicology, 2009, 22, 64-71.	1.7	22
35	Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environmental Science and Pollution Research, 2018, 25, 16508-16521.	2.7	22
36	Detection and Quantification of Polychlorinated Biphenyl Sulfates in Human Serum. Environmental Science & Environmental Scienc	4.6	22

#	Article	IF	Citations
37	Hydroxylated and sulfated metabolites of commonly occurring airborne polychlorinated biphenyls inhibit human steroid sulfotransferases SULT1E1 and SULT2A1. Environmental Toxicology and Pharmacology, 2018, 58, 196-201.	2.0	21
38	Molecular specificity of aryl sulfotransferase IV (tyrosine-ester sulfotransferase) for xenobiotic substrates and inhibitors. Chemico-Biological Interactions, 1994, 92, 3-14.	1.7	19
39	Importance of peri-Interactions on the Stereospecificity of Rat Hydroxysteroid Sulfotransferase STa with 1-Arylethanols. Chemical Research in Toxicology, 1999, 12, 278-285.	1.7	19
40	Endoxifen and Other Metabolites of Tamoxifen Inhibit Human Hydroxysteroid Sulfotransferase 2A1 (hSULT2A1). Drug Metabolism and Disposition, 2014, 42, 1843-1850.	1.7	19
41	Enzymic and chemical oxidations of leurosine to 5'-hydroxyleurosine. Journal of Organic Chemistry, 1987, 52, 1500-1504.	1.7	18
42	In vitro metabolic transformations of vinblastine: oxidations catalyzed by human ceruloplasmin. Journal of Medicinal Chemistry, 1989, 32, 2158-2162.	2.9	18
43	In vitro metabolic transformations of vinblastine: oxidations catalyzed by peroxidase. Journal of Medicinal Chemistry, 1989, 32, 674-679.	2.9	17
44	Inhibition of rat hepatic aryl sulphotransferase IV by dihydrodiol derivatives of benzo[a]pyrene and naphthalene. Xenobiotica, 1992, 22, 247-255.	0.5	17
45	Metabolism of the Catharanthus Alkaloids: from Streptomyces griseus to Monoamine Oxidase B. Journal of Natural Products, 1992, 55, 269-284.	1.5	17
46	Physicochemical properties of hydroxylated polychlorinated biphenyls aid in predicting their interactions with rat sulfotransferase 1A1 (rSULT1A1). Chemico-Biological Interactions, 2011, 189, 153-160.	1.7	17
47	Measurement of Aryl and Alcohol Sulfotransferase Activity. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2001, 8, Unit4.5.	1.1	15
48	Comparative Molecular Field Analysis of Substrates for an Aryl Sulfotransferase Based on Catalytic Mechanism and Protein Homology Modeling. Journal of Medicinal Chemistry, 2002, 45, 5514-5522.	2.9	15
49	Regioselective iodination of chlorinated aromatic compounds using silver salts. Tetrahedron, 2011, 67, 7461-7469.	1.0	15
50	Structureâ^'Function Modeling of the Interactions of N-Alkyl-N-hydroxyanilines with Rat Hepatic Aryl Sulfotransferase IV. Chemical Research in Toxicology, 2000, 13, 1251-1258.	1.7	13
51	ENANTIOSELECTIVITY OF HUMAN HYDROXYSTEROID SULFOTRANSFERASE ST2A3 WITH NAPHTHYL-1-ETHANOLS. Drug Metabolism and Disposition, 2003, 31, 697-700.	1.7	13
52	Sulfotransferases., 2010,, 367-384.		13
53	Microsomal Flavin-Containing Monooxygenase Activity in Rat Corpus Striatum. Journal of Neurochemistry, 1984, 42, 1350-1353.	2.1	12
54	Cysteamine and cystamine. Methods in Enzymology, 1987, 143, 149-154.	0.4	12

#	Article	IF	CITATIONS
55	Bacterial Expression, Purification, and Characterization of Rat Hydroxysteroid Sulfotransferase STa. Protein Expression and Purification, 2001, 21, 235-242.	0.6	12
56	Chlorinated Biphenyl Quinones and Phenyl-2,5-benzoquinone Differentially Modify the Catalytic Activity of Human Hydroxysteroid Sulfotransferase hSULT2A1. Chemical Research in Toxicology, 2013, 26, 1474-1485.	1.7	12
57	Studies on an affinity label for the sulfuryl acceptor binding site in an aryl sulfotransferase. Chemico-Biological Interactions, 1998, 109, 81-92.	1.7	11
58	Oxidative Modification of Rat Sulfotransferase 1A1 Activity in Hepatic Tissue Slices Correlates with Effects on the Purified Enzyme. Drug Metabolism and Disposition, 2012, 40, 298-303.	1.7	11
59	Modification of the Catalytic Function of Human Hydroxysteroid Sulfotransferase hSULT2A1 by Formation of Disulfide Bonds. Drug Metabolism and Disposition, 2013, 41, 1094-1103.	1.7	11
60	[66] Cysteine S-conjugate N-acetyltransferase. Methods in Enzymology, 1985, 113, 516-520.	0.4	10
61	Leurosine biotransformations: an unusual ring-fission reaction catalyzed by peroxidase. Chemical Research in Toxicology, 1988, 1, 238-242.	1.7	10
62	A Comparative Molecular Field Analysisâ€Based Approach to Prediction of Sulfotransferase Catalytic Specificity. Methods in Enzymology, 2005, 400, 249-263.	0.4	10
63	Binding interactions of hydroxylated polychlorinated biphenyls (OHPCBs) with human hydroxysteroid sulfotransferase hSULT2A1. Chemico-Biological Interactions, 2014, 212, 56-64.	1.7	10
64	Modulating inhibitors of transthyretin fibrillogenesis via sulfation: Polychlorinated biphenyl sulfates as models. Chemico-Biological Interactions, 2015, 228, 1-8.	1.7	10
65	INFLUENCE OF PHENYLALANINES 77 AND 138 ON THE STEREOSPECIFICITY OF ARYL SULFOTRANSFERASE IV. Drug Metabolism and Disposition, 2004, 32, 559-565.	1.7	9
66	The Effects of Endoxifen and Other Major Metabolites of Tamoxifen on the Sulfation of Estradiol Catalyzed by Human Cytosolic Sulfotransferases hSULT1E1 and hSULT1A1*1. Drug Metabolism and Disposition, 2015, 43, 843-850.	1.7	9
67	PCB Sulfates in Serum from Mothers and Children in Urban and Rural U.S. Communities. Environmental Science & Environmental Sci	4.6	9
68	Evidence of two separate mechanisms for the decrease in aryl sulfotransferase activity in rat liver during early stages of 2-acetylaminofluorene–induced hepatocarcinogenesis. Molecular Carcinogenesis, 1994, 9, 2-9.	1.3	7
69	Arylsulfotransferase IV Catalyzed Sulfation of 1-Naphthalenemethanol. Advances in Experimental Medicine and Biology, 1986, 197, 415-422.	0.8	6
70	Studies on the Nature and Regulation of the Cellular Thiol:Disulphide Potential. Novartis Foundation Symposium, 1980, , 191-204.	1.2	6
71	Oxidation-dependent inactivation of aryl sulfotransferase IV by primary N-hydroxy arylamines during in vitro assays. Carcinogenesis, 1997, 18, 843-849.	1.3	5
72	Effective synthesis of sulfate metabolites of chlorinated phenols. Chemosphere, 2013, 93, 1965-1971.	4.2	5

#	Article	IF	CITATIONS
73	Chapter 4 Metabolic Transformations of Alkaloids. Alkaloids: Chemistry and Pharmacology, 1986, , 323-405.	0.2	4
74	Biphenyl-4-yl 2,2,2-trichloroethyl sulfate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1073-o1073.	0.2	4
75	Mechanistic insights into the specificity of human cytosolic sulfotransferase 2A1 (hSULT2A1) for hydroxylated polychlorinated biphenyls through the use of fluoro-tagged probes. Environmental Science and Pollution Research, 2016, 23, 2119-2127.	2.7	4
76	KINETIC STUDIES ON MECHANISM AND SUBSTRATE SPECIFICITY OF THE MICROSOMAL FLAVIN–CONTAINING MONOOXYGENASE. , 1980, , 637-645.		4
77	Human hepatic microsomal sulfatase catalyzes the hydrolysis of polychlorinated biphenyl sulfates: A potential mechanism for retention of hydroxylated PCBs. Environmental Toxicology and Pharmacology, 2021, 88, 103757.	2.0	4
78	Peroxidase as a model for reduction of tertiary amine oxides catalyzed by rat hepatic supernatant and microsomal fractions. Biochemical Pharmacology, 1989, 38, 573-579.	2.0	3
79	In Vitro and Ex Vivo Hydrolysis Rates of Ethacrynate Esters and Their Relationship to Intraocular Pressure in the Rabbit Eye. Journal of Ocular Pharmacology and Therapeutics, 2000, 16, 539-556.	0.6	3
80	$3\hat{a}$ €², $4\hat{a}$ €²-Dichlorobiphenyl-4-yl 2,2,2-trichloroethyl sulfate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1615-o1616.	0.2	3
81	PHOTOCHEMICAL OXIDATION OF VINDOLINE and 16-O-ACETYLVINDOLINE. Photochemistry and Photobiology, 1988, 48, 265-269.	1.3	2
82	4′-Chlorobiphenyl-3-yl 2,2,2-trichloroethyl sulfate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2306-o2306.	0.2	2
83	Sulfotransferases. , 2018, , 407-428.		1
84	3,4′,5-Trichlorobiphenyl-4-yl 2,2,2-trichloroethyl sulfate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o620-o620.	0.2	1
85	Biochemical Pharmacology and Toxicology. Vol. I. Methodological Aspects of Drug Metabolizing Enzymes. Journal of Pharmaceutical Sciences, 1986, 75, 727.	1.6	0
86	Transformations of MPTP by Ceruloplasmin and Peroxidase: Comparison with Vinca Alkaloid Biotransformations. Journal of Natural Products, 1987, 50, 490-493.	1.5	0
87	Endoxifen and other metabolites of tamoxifen inhibit human hydroxysteroid sulfotransferase hSULT2A1. FASEB Journal, 2013, 27, 892.9.	0.2	0
88	Hydroxylated Metabolites of Common Airborne Polychlorinated Biphenyls and Their Potential for Disrupting Estrogen Homeostasis and Adipogenesis. FASEB Journal, 2018, 32, 605.8.	0.2	0