Robert Leo Skov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5305368/publications.pdf

Version: 2024-02-01

22099 33814 11,681 178 59 99 citations g-index h-index papers 198 198 198 11182 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infectious Diseases, The, 2011, 11, 595-603.	4.6	751
2	Staphylococcus aureus CC398: Host Adaptation and Emergence of Methicillin Resistance in Livestock. MBio, 2012, 3 , .	1.8	638
3	A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant <i>Staphylococcus aureus</i> pandemic. Genome Research, 2013, 23, 653-664.	2.4	412
4	Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Eurosurveillance, 2015, 20, .	3.9	326
5	Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251. Clinical Microbiology and Infection, 2012, 18, 395-400.	2.8	322
6	Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Eurosurveillance, 2016, 21, 30155.	3.9	277
7	Frequent emergence and limited geographic dispersal of methicillin-resistant <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14130-14135.	3.3	239
8	Pigs as Source of Methicillin-Resistant <i>Staphylococcus aureus</i> CC398 Infections in Humans, Denmark. Emerging Infectious Diseases, 2008, 14, 1383-1389.	2.0	234
9	Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel <i>mecA</i> homologue <i>mecC</i> EMBO Molecular Medicine, 2013, 5, 509-515.	3.3	192
10	<i>Staphylococcus aureus</i> and the ecology of the nasal microbiome. Science Advances, 2015, 1, e1400216.	4.7	189
11	Livestock-associated Methicillin-ResistantStaphylococcus aureus in Humans, Europe. Emerging Infectious Diseases, 2011, 17, 502-505.	2.0	187
12	Livestock Origin for a Human Pandemic Clone of Community-Associated Methicillin-Resistant Staphylococcus aureus. MBio, 2013, 4, .	1.8	177
13	Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clinical Microbiology and Infection, 2013, 19, E16-E22.	2.8	153
14	Epidemiology of Emerging Methicillin-Resistant Staphylococcus aureus (MRSA) in Denmark: a Nationwide Study in a Country with Low Prevalence of MRSA Infection. Journal of Clinical Microbiology, 2005, 43, 1836-1842.	1.8	152
15	Characterization of extended-spectrum \hat{l}^2 -lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth-generation cephalosporins. Journal of Antimicrobial Chemotherapy, 2014, 69, 2650-2657.	1.3	149
16	Guidelines for Reporting Novel <i>mecA</i> Gene Homologues. Antimicrobial Agents and Chemotherapy, 2012, 56, 4997-4999.	1.4	144
17	Risk of hospitalisation associated with infection with SARS-CoV-2 omicron variant versus delta variant in Denmark: an observational cohort study. Lancet Infectious Diseases, The, 2022, 22, 967-976.	4. 6	140
18	Prevalence of infective endocarditis in patients with Staphylococcus aureus bacteraemia: the value of screening with echocardiography. European Journal of Echocardiography, 2011, 12, 414-420.	2.3	138

#	Article	IF	Citations
19	Emergence of methicillin resistance predates the clinical use of antibiotics. Nature, 2022, 602, 135-141.	13.7	138
20	Novel Types of Staphylococcal Cassette Chromosome <i>mec</i> Elements Identified in Clonal Complex 398 Methicillin-Resistant Staphylococcus aureus Strains. Antimicrobial Agents and Chemotherapy, 2011, 55, 3046-3050.	1.4	136
21	Origin, evolution, and global transmission of community-acquired <i>Staphylococcus aureus</i> ST8. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10596-E10604.	3.3	136
22	Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011. Eurosurveillance, 2015, 20, .	3.9	130
23	Increasing incidence but decreasing in-hospital mortality of adult Staphylococcus aureus bacteraemia between 1981 and 2000. Clinical Microbiology and Infection, 2007, 13, 257-263.	2.8	129
24	Estimation of SARS-CoV-2 Infection Fatality Rate by Real-time Antibody Screening of Blood Donors. Clinical Infectious Diseases, 2021, 72, 249-253.	2.9	129
25	Risk of hospitalisation associated with infection with SARS-CoV-2 lineage B.1.1.7 in Denmark: an observational cohort study. Lancet Infectious Diseases, The, 2021, 21, 1507-1517.	4.6	129
26	spa typing of methicillin-resistant Staphylococcus aureus isolated from domestic animals and veterinary staff in the UK and Ireland. Journal of Antimicrobial Chemotherapy, 2006, 58, 1118-1123.	1.3	122
27	<i>Staphylococcus lugdunensis</i> , a Common Cause of Skin and Soft Tissue Infections in the Community. Journal of Clinical Microbiology, 2009, 47, 946-950.	1.8	121
28	Danish Integrated Antimicrobial Resistance Monitoring and Research Program. Emerging Infectious Diseases, 2007, 13, 1633-1639.	2.0	116
29	Origin and Evolution of European Community-Acquired Methicillin-Resistant Staphylococcus aureus. MBio, 2014, 5, e01044-14.	1.8	112
30	Detection of methicillin resistance in coagulase-negative staphylococci and in staphylococci directly from simulated blood cultures using the EVIGENE MRSA Detection Kit. Journal of Antimicrobial Chemotherapy, 2003, 51, 419-421.	1.3	109
31	Rapid PCR Detection of Staphylococcus aureus Clonal Complex 398 by Targeting the Restriction-Modification System Carrying <i>sau1-hsdS1</i> . Journal of Clinical Microbiology, 2011, 49, 732-734.	1.8	104
32	Evaluation of a cefoxitin 30 Âg disc on Iso-Sensitest agar for detection of methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2003, 52, 204-207.	1.3	100
33	Community-associated meticillin-resistant Staphylococcus aureus as a cause of hospital-acquired infections. Journal of Hospital Infection, 2009, 73, 364-370.	1.4	96
34	Retrospective detection of methicillin resistant and susceptible Staphylococcus aureus ST398 in Danish slaughter pigs. Veterinary Microbiology, 2007, 122, 384-386.	0.8	93
35	Development of a real-time quadruplex PCR assay for simultaneous detection of nuc, Panton-Valentine leucocidin (PVL), mecA and homologue mecALGA251. Journal of Antimicrobial Chemotherapy, 2012, 67, 2338-2341.	1.3	93
36	Future challenges and treatment of <i>Staphylococcus aureus</i> bacteremia with emphasis on MRSA. Future Microbiology, 2011, 6, 43-56.	1.0	91

#	Article	IF	CITATIONS
37	Characterization of the Epidemic European Fusidic Acid-Resistant Impetigo Clone of Staphylococcus aureus. Journal of Clinical Microbiology, 2007, 45, 1505-1510.	1.8	90
38	Emergence and Characterization of Community-Associated Methicillin-Resistant <i>Staphyloccocus aureus</i> Infections in Denmark, 1999 to 2006. Journal of Clinical Microbiology, 2009, 47, 73-78.	1.8	89
39	Evidence for Human Adaptation and Foodborne Transmission of Livestock-Associated Methicillin-Resistant <i>Staphylococcus aureus</i> : Table 1 Clinical Infectious Diseases, 2016, 63, 1349-1352.	2.9	89
40	Methicillin-Resistant <i>Staphylococcus aureus</i> CC398 in Humans and Pigs in Norway: A "One Health―Perspective on Introduction and Transmission. Clinical Infectious Diseases, 2016, 63, 1431-1438.	2.9	86
41	Wall Teichoic Acid Glycosylation Governs Staphylococcus aureus Nasal Colonization. MBio, 2015, 6, e00632.	1.8	84
42	Methicillin-resistant and -susceptible Staphylococcus aureus from retail meat in Denmark. International Journal of Food Microbiology, 2017, 249, 72-76.	2.1	83
43	Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. Journal of Antimicrobial Chemotherapy, 2014, 69, 594-597.	1.3	80
44	Rapid Differentiation between Livestock-Associated and Livestock-Independent Staphylococcus aureus CC398 Clades. PLoS ONE, 2013, 8, e79645.	1.1	78
45	Emergence of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Bloodstream Infections in Denmark. Clinical Infectious Diseases, 2017, 65, 1072-1076.	2.9	78
46	High risk for nasal carriage of methicillin-resistant Staphylococcus aureus among Danish veterinary practitioners. Scandinavian Journal of Work, Environment and Health, 2008, 34, 151-157.	1.7	78
47	Rapid Increase of Genetically Diverse Methicillin-Resistant <i>Staphylococcus aureus,</i> Copenhagen, Denmark. Emerging Infectious Diseases, 2007, 13, 1533-1540.	2.0	76
48	Staphylococcus aureus CC398 Clade Associated with Human-to-Human Transmission. Applied and Environmental Microbiology, 2012, 78, 8845-8848.	1.4	75
49	Epidemiology of European Community-Associated Methicillin-Resistant <i>Staphylococcus aureus</i> Clonal Complex 80 Type IV Strains Isolated in Denmark from 1993 to 2004. Journal of Clinical Microbiology, 2008, 46, 62-68.	1.8	74
50	Drivers and Dynamics of Methicillin-Resistant Livestock-Associated Staphylococcus aureus CC398 in Pigs and Humans in Denmark. MBio, 2018, 9, .	1.8	74
51	Diversity of the tetracycline resistance gene tet(M) and identification of Tn916- and Tn5801-like (Tn6014) transposons in Staphylococcus aureus from humans and animals. Journal of Antimicrobial Chemotherapy, 2009, 64, 490-500.	1.3	69
52	Pantonâ€"Valentine leukocidin-positive Staphylococcus aureus : a position statement from the International Society of Chemotherapy. International Journal of Antimicrobial Agents, 2018, 51, 16-25.	1.1	68
53	Update on the prevention and control of community-acquired meticillin-resistant Staphylococcus aureus (CA-MRSA). International Journal of Antimicrobial Agents, 2012, 39, 193-200.	1.1	67
54	Genetic Diversity of Staphylocoagulase Genes (coa): Insight into the Evolution of Variable Chromosomal Virulence Factors in Staphylococcus aureus. PLoS ONE, 2009, 4, e5714.	1.1	67

#	Article	IF	Citations
55	Increased transmissibility of SARS-CoV-2 lineage B.1.1.7 by age and viral load. Nature Communications, 2021, 12, 7251.	5.8	67
56	Intracellular Activity of Antibiotics against <i>Staphylococcus aureus</i> in a Mouse Peritonitis Model. Antimicrobial Agents and Chemotherapy, 2009, 53, 1874-1883.	1.4	66
57	Livestock-associated meticillin-resistant Staphylococcus aureus (MRSA) among human MRSA isolates, European Union/European Economic Area countries, 2013. Eurosurveillance, 2017, 22, .	3.9	66
58	A Common Variant of Staphylococcal Cassette Chromosome <i>mec</i> Type IVa in Isolates from Copenhagen, Denmark, Is Not Detected by the BD GeneOhm Methicillin-Resistant <i>Staphylococcus aureus</i> Assay. Journal of Clinical Microbiology, 2009, 47, 1524-1527.	1.8	64
59	Horses in Denmark Are a Reservoir of Diverse Clones of Methicillin-Resistant and -Susceptible Staphylococcus aureus. Frontiers in Microbiology, 2017, 8, 543.	1.5	63
60	Phenotypic Detection of Methicillin Resistance in Staphylococcus aureus by Disk Diffusion Testing and Etest on Mueller-Hinton Agar. Journal of Clinical Microbiology, 2006, 44, 4395-4399.	1.8	62
61	Methicillin-Resistant Staphylococcus aureus ST9 in Pigs in Thailand. PLoS ONE, 2012, 7, e31245.	1.1	62
62	Bacteremia/Septicemia Due to Aerococcus-Like Organisms: Report of Seventeen Cases. Clinical Infectious Diseases, 1995, 21, 943-947.	2.9	60
63	Changing Epidemiology of Pediatric Staphylococcus aureus Bacteremia in Denmark From 1971 Through 2000. Pediatric Infectious Disease Journal, 2007, 26, 398-405.	1.1	59
64	Implications of identifying the recently defined members of the Staphylococcus aureus complex S.Âargenteus and S.Âschweitzeri: a position paper of members of the ESCMID Study Group for Staphylococci and Staphylococcal Diseases (ESGS). Clinical Microbiology and Infection, 2019, 25, 1064-1070.	2.8	58
65	In vitro antimicrobial susceptibility of Aerococcus urinae to 14 antibiotics, and time-kill curves for penicillin, gentamicin and vancomycin. Journal of Antimicrobial Chemotherapy, 2001, 48, 653-658.	1.3	57
66	Use of Vitek 2 Antimicrobial Susceptibility Profile To Identify <i>mecC</i> in Methicillin-Resistant Staphylococcus aureus. Journal of Clinical Microbiology, 2013, 51, 2732-2734.	1.8	53
67	Spread of a Methicillin-Resistant Staphylococcus aureus ST80-IV Clone in a Danish Community. Infection Control and Hospital Epidemiology, 2005, 26, 144-149.	1.0	52
68	Stable incidence and continued improvement in short term mortality of Staphylococcus aureus bacteraemia between 1995 and 2008. BMC Infectious Diseases, 2012, 12, 260.	1.3	51
69	Genome investigations show host adaptation and transmission of LA-MRSA CC398 from pigs into Danish healthcare institutions. Scientific Reports, 2019, 9, 18655.	1.6	51
70	Phenotypic detection of mecC-MRSA: cefoxitin is more reliable than oxacillin. Journal of Antimicrobial Chemotherapy, 2014, 69, 133-135.	1.3	50
71	Transmission of Methicillin-Resistant Staphylococcus aureus to Human Volunteers Visiting a Swine Farm. Applied and Environmental Microbiology, 2017, 83, .	1.4	50
72	Effectiveness of penicillin, dicloxacillin and cefuroxime for penicillin-susceptible Staphylococcus aureus bacteraemia: a retrospective, propensity-score-adjusted case–control and cohort analysis. Journal of Antimicrobial Chemotherapy, 2013, 68, 1894-1900.	1.3	49

#	Article	IF	CITATIONS
73	Distribution of Fusidic Acid Resistance Determinants in Methicillin-Resistant <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 1173-1176.	1.4	48
74	Risk and prognosis of Staphylococcus aureus bacteremia among individuals with and without end-stage renal disease: a Danish, population-based cohort study. BMC Infectious Diseases, 2015, 15, 6.	1.3	48
75	Selective reporting of antibiotic susceptibility test results in European countries: an ESCMID cross-sectional survey. International Journal of Antimicrobial Agents, 2017, 49, 162-166.	1.1	48
76	Two Distinct Clones of Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA) with the Same USA300 Pulsed-Field Gel Electrophoresis Profile: a Potential Pitfall for Identification of USA300 Community-Associated MRSA. Journal of Clinical Microbiology, 2009, 47, 3765-3768.	1,8	46
77	Fitness cost: a bacteriological explanation for the demise of the first international methicillin-resistant Staphylococcus aureus epidemic. Journal of Antimicrobial Chemotherapy, 2012, 67, 1325-1332.	1.3	44
78	Range Expansion and the Origin of USA300 North American Epidemic Methicillin-Resistant <i>Staphylococcus aureus</i> . MBio, 2018, 9, .	1.8	42
79	Meticillin-resistant Staphylococcus aureus (MRSA): screening and decolonisation. International Journal of Antimicrobial Agents, 2011, 37, 195-201.	1.1	41
80	Influence of Host Genetics and Environment on Nasal Carriage of Staphylococcus aureus in Danish Middle-Aged and Elderly Twins. Journal of Infectious Diseases, 2012, 206, 1178-1184.	1.9	41
81	Systemic and deep-seated infections caused by Arcanobacterium haemolyticum. European Journal of Clinical Microbiology and Infectious Diseases, 1998, 17, 578-582.	1.3	40
82	Evaluation of cefoxitin 5 and 10 μg discs for the detection of methicillin resistance in staphylococci. Journal of Antimicrobial Chemotherapy, 2005, 55, 157-161.	1.3	40
83	Prevalence of infective endocarditis in patients with positive blood cultures: a Danish nationwide study. European Heart Journal, 2019, 40, 3237-3244.	1.0	40
84	A nationwide study of comorbidity and risk of reinfection after Staphylococcus aureus bacteraemia. Journal of Infection, 2013, 67, 199-205.	1.7	39
85	Correlation of MIC methods and tentative interpretive criteria for disk diffusion susceptibility testing using NCCLS methodology for fusidic acid. Diagnostic Microbiology and Infectious Disease, 2001, 40, 111-116.	0.8	37
86	Dynamic of Livestock-Associated Methicillin-Resistant Staphylococcus aureus CC398 in Pig Farm Households: A Pilot Study. PLoS ONE, 2013, 8, e65512.	1.1	37
87	Phylogenetic Analysis of Staphylococcus aureus CC398 Reveals a Sub-Lineage Epidemiologically Associated with Infections in Horses. PLoS ONE, 2014, 9, e88083.	1.1	37
88	Development of a Pefloxacin Disk Diffusion Method for Detection of Fluoroquinolone-Resistant Salmonella enterica. Journal of Clinical Microbiology, 2015, 53, 3411-3417.	1.8	35
89	Detection of mcr-1-encoding plasmid-mediated colistin-resistant Salmonella isolates from human infection in Denmark. International Journal of Antimicrobial Agents, 2017, 49, 261-262.	1.1	35
90	Evaluation of a new 3-h hybridization method for detecting the mecA gene in Staphylococcus aureus and comparison with existing genotypic and phenotypic susceptibilty testing methods. Journal of Antimicrobial Chemotherapy, 1999, 43, 467-475.	1.3	34

#	Article	IF	Citations
91	Increased Risk of Hospitalisation Associated with Infection with SARS-CoV-2 Lineage B.1.1.7 in Denmark. SSRN Electronic Journal, $0, \dots$	0.4	34
92	<i>Staphylococcus</i> , <i>Micrococcus</i> , and Other Catalase-Positive Cocci., 0, , 354-382.		33
93	Carriage and Genetic Diversity of Methicillin-Resistant Staphylococcus aureus among Patients and Healthcare Workers in a Serbian University Hospital. PLoS ONE, 2015, 10, e0127347.	1.1	32
94	Genome Sequence of Staphylococcus aureus Strain 11819-97, an ST80-IV European Community-Acquired Methicillin-Resistant Isolate. Journal of Bacteriology, 2012, 194, 1625-1626.	1.0	31
95	Recently introduced qacA/B genes in Staphylococcus epidermidis do not increase chlorhexidine MIC/MBC. Journal of Antimicrobial Chemotherapy, 2013, 68, 2226-33.	1.3	31
96	Microbiological point of care testing before antibiotic prescribing in primary care: considerable variations between practices. BMC Family Practice, 2017, 18, 9.	2.9	30
97	Epidemiological differences between the UK and Ireland versus France in Staphylococcus aureus isolates resistant to fusidic acid from community-acquired skin and soft tissue infections. Journal of Antimicrobial Chemotherapy, 2008, 61, 589-594.	1.3	29
98	Presence of Methicillin-Resistant Staphylococcus aureus in Pigs in Peru. PLoS ONE, 2011, 6, e28529.	1.1	29
99	Staphylococcus epidermidis Isolated in 1965 Are More Susceptible to Triclosan than Current Isolates. PLoS ONE, 2013, 8, e62197.	1.1	28
100	Pig-associated methicillin-resistant Staphylococcus aureus: Family transmission and severe pneumonia in a newborn. Scandinavian Journal of Infectious Diseases, 2010, 42, 318-320.	1.5	27
101	Evaluation of a Modular Multiplex-PCR Methicillin-Resistant Staphylococcus aureus Detection Assay Adapted for <i>mecC</i> Detection. Journal of Clinical Microbiology, 2013, 51, 1917-1919.	1.8	26
102	Staphylococcus aureus ST398 detected in pigs in Australia. Journal of Antimicrobial Chemotherapy, 2014, 69, 1426-1428.	1.3	26
103	Long-term mortality and causes of death associated with Staphylococcus aureus bacteremia. A matched cohort study. Journal of Infection, 2016, 73, 346-357.	1.7	26
104	The associations between socioeconomic status and risk of Staphylococcus aureus bacteremia and subsequent endocarditis – a Danish nationwide cohort study. BMC Infectious Diseases, 2017, 17, 589.	1.3	26
105	Control of a methicillin-resistant Staphylococcus aureus (MRSA) outbreak in a day-care institution. Journal of Hospital Infection, 2006, 63, 84-92.	1.4	24
106	Multilocus Sequence Typing Scheme for Staphylococcus aureus: Revision of the <i>gmk</i> Locus. Journal of Clinical Microbiology, 2012, 50, 2538-2539.	1.8	24
107	Comparison of two agar dilution methods and three agar diffusion methods, including the Etest, for antibiotic susceptibility testing of thermophilic Campylobacter species. Clinical Microbiology and Infection, 1999, 5, 580-584.	2.8	23
108	Evaluation of Rosco Neoâ€Sensitabs for phenotypic detection and subgrouping of ESBLâ€, AmpC―and carbapenemaseâ€producing Enterobacteriaceae. Apmis, 2012, 120, 724-732.	0.9	23

#	Article	IF	Citations
109	<i>Staphylococcus aureus</i> Bacteremia, Europe. Emerging Infectious Diseases, 2005, 11, 1798-1799.	2.0	22
110	Phage-Mediated Immune Evasion and Transmission of Livestock-Associated Methicillin-Resistant <i>Staphylococcus aureus</i> I>in Humans. Emerging Infectious Diseases, 2020, 26, .	2.0	21
111	Whole-genome sequencing of bloodstream Staphylococcus aureus isolates does not distinguish bacteraemia from endocarditis. Microbial Genomics, 2017, 3, .	1.0	21
112	Staphylococcus aureus Bacteremia: a 14-year Nationwide Study in Hematological Patients with Malignant Disease or Agranulocytosis. Scandinavian Journal of Infectious Diseases, 1995, 27, 563-568.	1.5	20
113	Increased risk of venous thromboembolism within the first year after <i><scp>S</scp>taphylococcus aureus</i> bacteraemia: a nationwide observational matched cohort study. Journal of Internal Medicine, 2014, 275, 387-397.	2.7	20
114	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection Fatality Rate Among Elderly Danes: A Cross-sectional Study on Retired Blood Donors. Clinical Infectious Diseases, 2021, 73, e2962-e2969.	2.9	20
115	Nationwide study on SARS-CoV-2 transmission within households from lockdown to reopening, Denmark, 27 February 2020 to 1 August 2020. Eurosurveillance, 2022, 27, .	3.9	20
116	Livestock-associated methicillin-resistant Staphylococcus aureus is widespread in farmed mink () Tj ETQq0 0 0 rg	gBT/Qverl	ock 10 Tf 50 4
117	Comparative genomic analysis of European and Middle Eastern community-associated methicillin-resistant Staphylococcus aureus (CC80:ST80-IV) isolates by high-density microarray. Clinical Microbiology and Infection, 2009, 15, 748-755.	2.8	18
118	Gentamicin-Resistant <i>Enterococcus faecalis</i> Sequence Type 6 with Reduced Penicillin Susceptibility: Diagnostic and Therapeutic Implications. Journal of Clinical Microbiology, 2010, 48, 3820-3821.	1.8	18
119	Genome Analysis of Staphylococcus aureus ST291, a Double Locus Variant of ST398, Reveals a Distinct Genetic Lineage. PLoS ONE, 2013, 8, e63008.	1.1	18
120	Correlation of Cefoxitin MICs with the Presence of mecA in Staphylococcus spp. Journal of Clinical Microbiology, 2009, 47, 1902-1905.	1.8	17
121	<p>Cohort description: The Danish Blood Donor Staphylococcus aureus Carriage Study</p> . Clinical Epidemiology, 2019, Volume 11, 885-900.	1.5	17
122	Detection of Inducible Clindamycin Resistance in Staphylococci by Broth Microdilution Using Erythromycin-Clindamycin Combination Wells. Journal of Clinical Microbiology, 2007, 45, 3954-3957.	1.8	16
123	Novel Organization of the Arginine Catabolic Mobile Element and Staphylococcal Cassette ChromosomemecComposite Island and Its Horizontal Transfer between Distinct Staphylococcus aureus Genotypes. Antimicrobial Agents and Chemotherapy, 2013, 57, 5774-5777.	1.4	16
124	Human genetic variation in GLS2 is associated with development of complicated Staphylococcus aureus bacteremia. PLoS Genetics, 2018, 14, e1007667.	1. 5	16
125	Familial Clustering of (i) Staphylococcus aureus (i) Bacteremia in First-Degree Relatives. Annals of Internal Medicine, 2016, 165, 390.	2.0	15
126	Identification of a PVL-negative SCC mec -IVa sublineage of the methicillin-resistant Staphylococcus aureus CC80 lineage: understanding the clonal origin of CA-MRSA. Clinical Microbiology and Infection, 2018, 24, 273-278.	2.8	15

#	Article	IF	CITATIONS
127	Testing Denmark: a Danish Nationwide Surveillance Study of COVID-19. Microbiology Spectrum, 2021, 9, e0133021.	1.2	15
128	Proposal for common Nordic epidemiological terms and definitions for methicillin-resistant Staphylococcus aureus (MRSA). Scandinavian Journal of Infectious Diseases, 2008, 40, 495-502.	1.5	14
129	Human Genetic Susceptibility to Native Valve Staphylococcus aureus Endocarditis in Patients With S. aureus Bacteremia: Genome-Wide Association Study. Frontiers in Microbiology, 2018, 9, 640.	1.5	14
130	Introduction and transmission of SARS-CoV-2 lineage B.1.1.7, Alpha variant, in Denmark. Genome Medicine, 2022, 14, 47.	3.6	14
131	Staphylococcus aureusmutants lacking cell wall-bound protein A found in isolates from bacteraemia, MRSA infection and a healthy nasal carrier. Pathogens and Disease, 2013, 67, 19-24.	0.8	13
132	Performance of Etest and Disk Diffusion for Detection of Ciprofloxacin and Levofloxacin Resistance in Salmonella enterica. Journal of Clinical Microbiology, 2015, 53, 298-301.	1.8	13
133	Evaluation of Surrogate Disk Tests for Detection of Ciprofloxacin and Levofloxacin Resistance in Clinical Isolates of Salmonella enterica. Journal of Clinical Microbiology, 2015, 53, 3405-3410.	1.8	13
134	Rapid and high-resolution distinction of community-acquired and nosocomial Staphylococcus aureus isolates with identical pulsed-field gel electrophoresis patterns and spa types. International Journal of Medical Microbiology, 2013, 303, 70-75.	1.5	12
135	Preventing the introduction of meticillin-resistant Staphylococcus aureus into hospitals. Journal of Global Antimicrobial Resistance, 2014, 2, 260-268.	0.9	12
136	Detection of mecC -Positive Staphylococcus aureus: What To Expect from Immunological Tests Targeting PBP2a?. Journal of Clinical Microbiology, 2017, 55, 1961-1963.	1.8	12
137	Staphylococcus aureus Bacteremia in Children Aged 5-18 Yearsâ€"Risk Factors in the New Millennium. Journal of Pediatrics, 2018, 203, 108-115.e3.	0.9	12
138	Increased risk of <i>Staphylococcus aureus</i> bacteremia in hemodialysisâ€"A nationwide study. Hemodialysis International, 2019, 23, 230-238.	0.4	12
139	Comparable Outcomes of Short-Course and Prolonged-Course Therapy in Selected Cases of Methicillin-Susceptible <i>Staphylococcus aureus</i> Bacteremia: A Pooled Cohort Study. Clinical Infectious Diseases, 2021, 73, 866-872.	2.9	12
140	Seroprevalence of SARS-CoV-2 antibodies in social housing areas in Denmark. BMC Infectious Diseases, 2022, 22, 143.	1.3	12
141	Evaluation of different disk diffusion/media combinations for detection of methicillin resistance in Staphylococcus aureus and coagulase-negative staphylococci. Apmis, 2003, 111, 905-914.	0.9	11
142	Outcome and reinfection afterStaphylococcus aureusbacteraemia in individuals with and without HIV-1 infection: a case–control study. BMJ Open, 2014, 4, e004075.	0.8	10
143	Increased risk of arterial thromboembolic events after Staphylococcus aureus bacteremia: A matched cohort study. Journal of Infection, 2015, 71, 167-178.	1.7	10
144	Ticagrelor and the risk of $\langle i \rangle$ Staphylococcus aureus $\langle i \rangle$ bacteraemia and other infections. European Heart Journal - Cardiovascular Pharmacotherapy, 2022, 8, 13-19.	1.4	10

#	Article	IF	Citations
145	Klebsiella variicola causing nosocomial transmission among neonates – an emerging pathogen?. Journal of Medical Microbiology, 2020, 69, 396-401.	0.7	10
146	The proposed Drug Resistance Index (DRI) is not a good measure of antibiotic effectiveness in relation to drug resistance. BMJ Global Health, 2019, 4, e001838.	2.0	9
147	Dabigatran and the Risk of <i>Staphylococcus aureus</i> Bacteremia: A Nationwide Cohort Study. Clinical Infectious Diseases, 2021, 73, 480-486.	2.9	9
148	Evaluation of ceftiofur and cefquinome for phenotypic detection of methicillin resistance in Staphylococcus aureus using disk diffusion testing and MIC-determinations. Veterinary Microbiology, 2010, 140, 176-179.	0.8	8
149	Genetic Variability in Beta-Defensins Is Not Associated with Susceptibility to Staphylococcus aureus Bacteremia. PLoS ONE, 2012, 7, e32315.	1.1	8
150	Evaluation of the total MBL confirm kit (ROSCO) for detection of metallo- \hat{l}^2 -lactamases in Pseudomonas aeruginosa and Acinetobacter baumannii. Diagnostic Microbiology and Infectious Disease, 2014, 79, 486-488.	0.8	8
151	EUCAST disc diffusion criteria for the detection of mecA-Mediated \hat{l}^2 -lactam resistance in Staphylococcus pseudintermedius: oxacillin versus cefoxitin. Clinical Microbiology and Infection, 2020, 26, 122.e1-122.e6.	2.8	7
152	Aerococcus urinae and Aerococcus sanguinicola: Susceptibility Testing of 120 Isolates to Six Antimicrobial Agents Using Disk Diffusion (EUCAST), Etest, and Broth Microdilution Techniques. Open Microbiology Journal, 2017, 11, 160-166.	0.2	7
153	Tentative interpretative zone diameters for fusidic acid Neosensitabs® on Mueller Hinton agar and three blood containing media. International Journal of Antimicrobial Agents, 2003, 22, 502-507.	1.1	6
154	Antibiotic susceptibility and molecular epidemiology of Panton–Valentine leukocidin-positive meticillin-resistant Staphylococcus aureus: An international survey. Journal of Global Antimicrobial Resistance, 2014, 2, 43-47.	0.9	6
155	Cross-contamination: Comparison of Nasal and Chronic Leg Ulcer Staphylococcus aureus Strains Isolated from the Same Patient. Open Microbiology Journal, 2013, 7, 6-8.	0.2	6
156	Effects of temperature on the detection of methicillin resistance in Staphylococcus aureus using cefoxitin disc diffusion testing with Iso-Sensitest agar. Journal of Antimicrobial Chemotherapy, 2009, 63, 699-703.	1.3	5
157	Increased Age-Dependent Risk of Death Associated With lukF-PV-Positive Staphylococcus aureus Bacteremia. Open Forum Infectious Diseases, 2016, 3, ofw220.	0.4	5
158	Fecal carriage of extended-spectrum and AmpC \hat{l}^2 -lactamase-producing Enterobacteriaceae in surgical patients before and after antibiotic prophylaxis. Diagnostic Microbiology and Infectious Disease, 2016, 86, 316-321.	0.8	5
159	No apparent transmission of livestock-associated methicillin-resistant Staphylococcus aureus CC398 in a survey of staff at a regional Danish hospital. Antimicrobial Resistance and Infection Control, 2017, 6, 126.	1.5	5
160	Autologous transfusion of shed mediastinal blood after coronary artery bypass grafting and bacterial contamination. Annals of Thoracic Surgery, 2001, 72, 1327-1330.	0.7	4
161	In vitro susceptibility of Staphylococcus aureus towards amoxycillin-clavulanic acid, penicillin-clavulanic acid, dicloxacillin and cefuroxime. Apmis, 2002, 110, 559-564.	0.9	4
162	High consumption of tetracyclines for acne treatment among young Danish adults. Infectious Diseases, 2016, 48, 808-812.	1.4	4

#	Article	IF	CITATIONS
163	Comparison of Automated Antimicrobial Susceptibility Testing Systems To Detect <i>mecC</i> Positive Methicillin-Resistant Staphylococcus aureus. Journal of Clinical Microbiology, 2017, 55, 3554-3556.	1.8	4
164	Detection of Low-Level Methicillin-Resistant Staphylococcus aureus with Commercially Available Tests. Journal of Clinical Microbiology, 2003, 41, 3458-3458.	1.8	3
165	Evaluation of mupA EVIGENE Assay for Determination of High-Level Mupirocin Resistance in Staphylococcus aureus. Journal of Clinical Microbiology, 2010, 48, 4253-4255.	1.8	3
166	Evaluation of methods for detection of \hat{l}^2 -lactamase production in MSSA. Journal of Antimicrobial Chemotherapy, 2021, 76, 1487-1494.	1.3	3
167	MRSA infections increasing in the Nordic countries. , 2005, 10, E050804.2.		3
168	Utility of a newly developed Mueller-Hinton E agar for the detection of MRSA carrying the novel mecA homologue mecC. Journal of Antimicrobial Chemotherapy, 2014, 70, 1256-7.	1.3	2
169	Variable performance of four commercial chromogenic media for detection of methicillin-resistant Staphylococcus aureus isolates harbouring mecC. International Journal of Antimicrobial Agents, 2017, 50, 263-265.	1.1	2
170	Susceptibility testing of urinary isolates of Escherichia coli to mecillinam using NCCLS methodology. International Journal of Antimicrobial Agents, 2005, 25, 198-204.	1.1	1
171	Identifying Livestock-Associated Methicillin-ResistantStaphylococcus aureusin the United States. JAMA Internal Medicine, 2014, 174, 824.	2.6	1
172	Carry-over of host nutrients during sampling enhances undesired growth of Staphylococcus aureus in liquid Amies transport medium. Diagnostic Microbiology and Infectious Disease, 2019, 93, 5-8.	0.8	1
173	External quality assessment (EQA) of Neisseria gonorrhoeae antimicrobial susceptibility testing in primary laboratories in Germany. BMC Infectious Diseases, 2020, 20, 514.	1.3	1
174	EVALUATION OF MONOSTAPH PLUS IN COMPARISON TO TWO OTHER LATEX AGGLUTINATION TESTS FOR THE IDENTIFICATION OFSTAPHYLOCOCCUS AUREUS. Journal of Rapid Methods and Automation in Microbiology, 2009, 17, 414-419.	0.4	0
175	Importance of a Diverse Isolate Collection When Defining Genotype-Specific Mass Spectra in Staphylococcus aureus. Journal of Clinical Microbiology, 2014, 52, 2738-2739.	1.8	0
176	212. Outcomes of Adults with Uncomplicated Staphylococcus aureus Bacteremia Receiving Short-Course Vs. Prolonged-Course Antibiotic Therapy in a Multicenter, Propensity Score–Matched Cohort. Open Forum Infectious Diseases, 2019, 6, S125-S126.	0.4	0
177	Prevalence of Infective Endocarditis in Patients with Positive Blood Cultures: A Danish Nationwide Study. SSRN Electronic Journal, 0, , .	0.4	0
178	Global development of resistancesecondary publication. Danish Medical Bulletin, 2007, 54, 160-2.	0.3	0