List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5305215/publications.pdf Version: 2024-02-01

Πίνολν Ορληλά

#	Article	IF	CITATIONS
1	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
2	Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin. Journal of the American Chemical Society, 2010, 132, 4678-4684.	6.6	739
3	Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications. Applied Spectroscopy, 2011, 65, 825-837.	1.2	522
4	Oxygen Reactions in a Nonâ€Aqueous Li ⁺ Electrolyte. Angewandte Chemie - International Edition, 2011, 50, 6351-6355.	7.2	518
5	Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chemical Society Reviews, 2012, 41, 7085.	18.7	380
6	Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nature Nanotechnology, 2008, 3, 548-551.	15.6	354
7	Surface-enhanced Raman spectroscopy for in vivo biosensing. Nature Reviews Chemistry, 2017, 1, .	13.8	325
8	Evaluation of Surface-Enhanced Resonance Raman Scattering for Quantitative DNA Analysis. Analytical Chemistry, 2004, 76, 412-417.	3.2	245
9	Ultrasensitive DNA Detection Using Oligonucleotideâ^'Silver Nanoparticle Conjugates. Analytical Chemistry, 2008, 80, 2805-2810.	3.2	236
10	Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nature Biotechnology, 2004, 22, 1133-1138.	9.4	192
11	Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood–brain barrier penetration. Scientific Reports, 2019, 9, 8278.	1.6	183
12	Selective Detection of Deoxyribonucleic Acid at Ultralow Concentrations by SERRS. Analytical Chemistry, 1997, 69, 4703-4707.	3.2	172
13	SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Analytical Chemistry, 2017, 89, 12666-12673.	3.2	170
14	Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging – the next dimension. Chemical Science, 2011, 2, 776.	3.7	163
15	Comparison of Surface-Enhanced Resonance Raman Scattering from Unaggregated and Aggregated Nanoparticles. Analytical Chemistry, 2004, 76, 592-598.	3.2	159
16	Quantitative SERRS for DNA sequence analysis. Chemical Society Reviews, 2008, 37, 1042.	18.7	155
17	Direct Surfaceâ€Enhanced Raman Scattering Analysis of DNA Duplexes. Angewandte Chemie - International Edition, 2015, 54, 1144-1148.	7.2	152
18	Simple Multiplex Genotyping by Surface-Enhanced Resonance Raman Scattering. Analytical Chemistry, 2002, 74, 1069-1074.	3.2	145

#	Article	IF	CITATIONS
19	Synthesis and physical properties ofanti-HIV antisense oligonucleotides bearing terminal lipophilic groups. Nucleic Acids Research, 1992, 20, 3411-3417.	6.5	138
20	Quantitative Simultaneous Multianalyte Detection of DNA by Dual-Wavelength Surface-Enhanced Resonance Raman Scattering. Angewandte Chemie - International Edition, 2007, 46, 1829-1831.	7.2	138
21	Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy. Chemical Society Reviews, 2008, 37, 883.	18.7	136
22	Enhanced oligonucleotide-nanoparticle conjugate stability using thioctic acid modified oligonucleotides. Nucleic Acids Research, 2007, 35, 3668-3675.	6.5	135
23	Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS. Chemical Science, 2014, 5, 1030-1040.	3.7	134
24	SERRS as a more sensitive technique for the detection of labelled oligonucleotides compared to fluorescence. Analyst, The, 2004, 129, 567.	1.7	132
25	Detection and identification of labeled DNA by surface enhanced resonance Raman scattering. Biopolymers, 2000, 57, 85-91.	1.2	131
26	Quantitative Enhanced Raman Scattering of Labeled DNA from Gold and Silver Nanoparticles. Small, 2007, 3, 1593-1601.	5.2	130
27	Recent developments in quantitative SERS: Moving towards absolute quantification. TrAC - Trends in Analytical Chemistry, 2018, 102, 359-368.	5.8	127
28	Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst, The, 2008, 133, 1505.	1.7	126
29	Assessment of silver and gold substrates for the detection of amphetamine sulfate by surface enhanced Raman scattering (SERS). Analyst, The, 2002, 127, 282-286.	1.7	123
30	Prospects of Deep Raman Spectroscopy for Noninvasive Detection of Conjugated Surface Enhanced Resonance Raman Scattering Nanoparticles Buried within 25 mm of Mammalian Tissue. Analytical Chemistry, 2010, 82, 3969-3973.	3.2	121
31	Importance of Nanoparticle Size in Colorimetric and SERSâ€Based Multimodal Trace Detection of Ni(II) Ions with Functional Gold Nanoparticles. Small, 2012, 8, 707-714.	5.2	115
32	Surface enhanced optical spectroscopies for bioanalysis. Analyst, The, 2011, 136, 3831.	1.7	113
33	Biosensing using silver nanoparticles and surface enhanced resonance Raman scattering. Chemical Communications, 2006, , 4363.	2.2	112
34	Chromophore containing bipyridyl ligands. Part 1: supramolecular solid-state structure of Ag(i) complexes. New Journal of Chemistry, 2005, 29, 826.	1.4	111
35	2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer. Nature Communications, 2020, 11, 2508.	5.8	108
36	Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nature Chemistry, 2015, 7, 591-596.	6.6	105

#	Article	IF	CITATIONS
37	Surface-Enhanced Resonance Raman Scattering as a Novel Method of DNA Discrimination. Angewandte Chemie - International Edition, 2000, 39, 1061-1063.	7.2	101
38	Cisplatin-Tethered Gold Nanoparticles That Exhibit Enhanced Reproducibility, Drug Loading, and Stability: a Step Closer to Pharmaceutical Approval?. Inorganic Chemistry, 2012, 51, 3490-3497.	1.9	94
39	Quantitative Detection of Human Tumor Necrosis Factor $\hat{I}\pm$ by a Resonance Raman Enzyme-Linked Immunosorbent Assay. Analytical Chemistry, 2011, 83, 297-302.	3.2	92
40	Au@Ag SERRS tags coupled to a lateral flow immunoassay for the sensitive detection of pneumolysin. Nanoscale, 2017, 9, 2051-2058.	2.8	91
41	Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine. Lab on A Chip, 2010, 10, 1662-1670.	3.1	84
42	SERRS. In Situ Substrate Formation and Improved Detection Using Microfluidics. Analytical Chemistry, 2002, 74, 1503-1508.	3.2	83
43	DNA Sequence Detection Using Surface-Enhanced Resonance Raman Spectroscopy in a Homogeneous Multiplexed Assay. Analytical Chemistry, 2009, 81, 8134-8140.	3.2	83
44	Simultaneous detection of alkaline phosphatase and β-galactosidase activity using SERRS. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1569-1571.	1.0	80
45	Bead-Based DNA Diagnostic Assay for Chlamydia Using Nanoparticle-Mediated Surface-Enhanced Resonance Raman Scattering Detection within a Lab-on-a-Chip Format. Analytical Chemistry, 2007, 79, 2844-2849.	3.2	76
46	Surface enhanced Raman spectroscopy (SERS): Potential applications for disease detection and treatment. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 21, 40-53.	5.6	75
47	Surface-Enhanced Raman Scattering Spectroscopy as a Sensitive and Selective Technique for the Detection of Folic Acid in Water and Human Serum. Applied Spectroscopy, 2008, 62, 371-376.	1.2	74
48	Practical control of SERRS enhancement. Faraday Discussions, 2006, 132, 135-145.	1.6	72
49	Positively charged silver nanoparticles and their effect on surface-enhanced Raman scattering of dye-labelled oligonucleotides. Chemical Communications, 2012, 48, 8192.	2.2	72
50	The Next Generation of Advanced Spectroscopy: Surface Enhanced Raman Scattering from Metal Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 9325-9327.	7.2	71
51	Bioanalytical Measurements Enabled by Surface-Enhanced Raman Scattering (SERS) Probes. Annual Review of Analytical Chemistry, 2017, 10, 415-437.	2.8	71
52	SERRS labelled beads for multiplex detection. Faraday Discussions, 2006, 132, 303-308.	1.6	68
53	Separation Free DNA Detection Using Surface Enhanced Raman Scattering. Analytical Chemistry, 2011, 83, 5817-5821.	3.2	67
54	Detection of Inflammation in Vivo by Surface-Enhanced Raman Scattering Provides Higher Sensitivity Than Conventional Fluorescence Imaging. Analytical Chemistry, 2012, 84, 5968-5975.	3.2	62

#	Article	IF	CITATIONS
55	Silver and magnetic nanoparticles for sensitive DNA detection by SERS. Chemical Communications, 2014, 50, 12907-12910.	2.2	62
56	SERRS dyes. Part I. Synthesis of benzotriazole monoazo dyes as model analytes for surface enhanced resonance Raman scattering. Analyst, The, 2002, 127, 838-841.	1.7	60
57	The first SERRS multiplexing from labelled oligonucleotides in a microfluidics lab-on-a-chip. Chemical Communications, 2004, , 118.	2.2	60
58	DNA detection by surface enhanced resonance Raman scattering (SERRS). Analyst, The, 2005, 130, 1125.	1.7	59
59	The past, present and future of enzyme measurements using surface enhanced Raman spectroscopy. Chemical Science, 2010, 1, 151.	3.7	59
60	SERS – facts, figures and the future. Chemical Society Reviews, 2017, 46, 3864-3865.	18.7	59
61	A new approach for DNA detection by SERRS. Faraday Discussions, 2006, 132, 261-268.	1.6	57
62	Quantitative SERRS immunoassay for the detection of human PSA. Analyst, The, 2009, 134, 842.	1.7	57
63	3D optical imaging of multiple SERS nanotags in cells. Chemical Science, 2013, 4, 3566.	3.7	57
64	Investigation of cellular uptake mechanism of functionalised gold nanoparticles into breast cancer using SERS. Chemical Science, 2020, 11, 5819-5829.	3.7	57
65	<i>In vivo</i> multiplex molecular imaging of vascular inflammation using surface-enhanced Raman spectroscopy. Theranostics, 2018, 8, 6195-6209.	4.6	56
66	Synthesis of novel monoazo benzotriazole dyes specifically for surface enhanced resonance Raman scattering‡. Chemical Communications, 1998, , 1187-1188.	2.2	53
67	Comparison of Surface-Enhanced Resonance Raman Scattering and Fluorescence for Detection of a Labeled Antibody. Analytical Chemistry, 2008, 80, 2351-2356.	3.2	53
68	Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation: correlation between plasmonic and surface-enhanced Raman scattering responses. Chemical Science, 2012, 3, 2262.	3.7	52
69	Assessing the Location of Surface Plasmons Over Nanotriangle and Nanohole Arrays of Different Size and Periodicity. Journal of Physical Chemistry C, 2012, 116, 6884-6892.	1.5	51
70	Sequenceâ€ S pecific DNA Detection Using Highâ€Affinity LNAâ€Functionalized Gold Nanoparticles. Small, 2007, 3, 1866-1868.	5.2	50
71	Surface Enhanced Raman Spectroscopy for Quantitative Analysis: Results of a Large-Scale European Multi-Instrument Interlaboratory Study. Analytical Chemistry, 2020, 92, 4053-4064.	3.2	50
72	Detection of Multiple Nitroaromatic Explosives via Formation of a Janowsky Complex and SERS. Analytical Chemistry, 2020, 92, 3253-3261.	3.2	50

#	Article	IF	CITATIONS
73	LNA functionalized gold nanoparticles as probes for double stranded DNA through triplex formation. Chemical Communications, 2008, , 2367.	2.2	47
74	Extreme red shifted SERS nanotags. Chemical Science, 2015, 6, 2302-2306.	3.7	47
75	Surface-Enhanced Raman Scattering Based Microfluidics for Single-Cell Analysis. Analytical Chemistry, 2018, 90, 12004-12010.	3.2	47
76	Directed Assembly of DNA-Functionalized Gold Nanoparticles Using Pyrrole–Imidazole Polyamides. Journal of the American Chemical Society, 2012, 134, 8356-8359.	6.6	46
77	SERS Primers and Their Mode of Action for Pathogen DNA Detection. Analytical Chemistry, 2013, 85, 1408-1414.	3.2	46
78	A novel nanozyme assay utilising the catalytic activity of silver nanoparticles and SERRS. Analyst, The, 2017, 142, 2484-2490.	1.7	46
79	Selective functionalisation of TNT for sensitive detection by SERRSElectronic supplementary information (ESI) available: full experimental details on the synthesis and analysis of the reported compounds. See http://www.rsc.org/suppdata/cc/b1/b110972c/. Chemical Communications, 2002, , 580-581.	2.2	45
80	Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS). Chemical Science, 2018, 9, 3788-3792.	3.7	45
81	Quantitative Assessment of Surface-Enhanced Resonance Raman Scattering for the Analysis of Dyes on Colloidal Silver. Analytical Chemistry, 1999, 71, 596-601.	3.2	44
82	DNA detection using enzymatic signal production and SERS. Chemical Communications, 2011, 47, 4649.	2.2	44
83	SERS activity and stability of the most frequently used silver colloids. Journal of Raman Spectroscopy, 2012, 43, 202-206.	1.2	44
84	Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer. Nanoscale, 2013, 5, 765-771.	2.8	44
85	Confocal SERS Mapping of Glycan Expression for the Identification of Cancerous Cells. Analytical Chemistry, 2014, 86, 4775-4782.	3.2	44
86	Comparison of Resonant and Non Resonant Conditions on the Concentration Dependence of Surface Enhanced Raman Scattering from a Dye Adsorbed on Silver Colloid. Journal of Physical Chemistry B, 2002, 106, 5408-5412.	1.2	43
87	Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA. Analyst, The, 2016, 141, 5170-5180.	1.7	43
88	Ratiometric analysis using Raman spectroscopy as a powerful predictor of structural properties of fatty acids. Royal Society Open Science, 2018, 5, 181483.	1.1	43
89	A new approach to oligonucleotide labelling using Diels–Alder cycloadditions and detection by SERRS. Chemical Communications, 2002, , 2100-2101.	2.2	42
90	Tracking Bisphosphonates through a 20â€mm Thick Porcine Tissue by Using Surfaceâ€Enhanced Spatially Offset Raman Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 8509-8511.	7.2	42

#	Article	IF	CITATIONS
91	Surface Enhanced Resonance Raman Scattering (SERRS)—A First Example of its Use in Multiplex Genotyping. ChemPhysChem, 2001, 2, 746.	1.0	41
92	SERRS-Based Enzymatic Probes for the Detection of Protease Activity. Journal of the American Chemical Society, 2008, 130, 11846-11847.	6.6	41
93	Surface-Enhanced Raman Scattering Investigation of Hollow Gold Nanospheres. Journal of Physical Chemistry C, 2012, 116, 8338-8342.	1.5	41
94	Detection of SERS active labelled DNA based on surface affinity to silver nanoparticles. Analyst, The, 2012, 137, 2063.	1.7	41
95	Synthesis of size tunable monodispersed silver nanoparticles and the effect of size on SERS enhancement. Vibrational Spectroscopy, 2014, 71, 41-46.	1.2	41
96	SERRS immunoassay for quantitative human CRP analysis. Analyst, The, 2008, 133, 1355.	1.7	40
97	Combining functionalised nanoparticles and SERS for the detection of DNA relating to disease. Faraday Discussions, 2011, 149, 291-299.	1.6	40
98	Formation of SERS active nanoparticle assemblies via specific carbohydrate–protein interactions. Chemical Communications, 2013, 49, 30-32.	2.2	40
99	Surface-Enhanced, Spatially Offset Raman Spectroscopy (SESORS) in Tissue Analogues. ACS Applied Materials & Interfaces, 2017, 9, 25488-25494.	4.0	40
100	Rationally designed SERS active silica coated silver nanoparticles. Chemical Communications, 2011, 47, 4415.	2.2	39
101	Palladium(0) NHC complexes: a new avenue to highly efficient phosphorescence. Chemical Science, 2015, 6, 3248-3261.	3.7	39
102	Detection of cardiovascular disease associated miR-29a using paper-based microfluidics and surface enhanced Raman scattering. Analyst, The, 2020, 145, 983-991.	1.7	39
103	Cholesteryl-Conjugated Phosphorothioate Oligodeoxynucleotides Modulate CYP2B1 Expression <i>In Vivo</i> . Journal of Drug Targeting, 1995, 2, 477-485.	2.1	38
104	Protonâ€Conductive Melaninâ€Like Fibers through Enzymatic Oxidation of a Selfâ€Assembling Peptide. Advanced Materials, 2020, 32, e2003511.	11.1	38
105	Multiple labelled nanoparticles for bio detection. Faraday Discussions, 2004, 126, 281.	1.6	37
106	Characterization of Novel Ag on TiO2 Films for Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2004, 58, 922-928.	1.2	37
107	A multiâ€component optimisation of experimental parameters for maximising SERS enhancements. Journal of Raman Spectroscopy, 2010, 41, 618-623.	1.2	37
108	Quantitative detection of dye labelled DNA using surface enhanced resonance Raman scattering (SERRS) from silver nanoparticles. Talanta, 2005, 67, 667-671.	2.9	36

#	Article	IF	CITATIONS
109	Nanoparticles and Inflammation. Scientific World Journal, The, 2011, 11, 1300-1312.	0.8	36
110	Highly sensitive detection of dye-labelled DNA using nanostructured gold surfaces. Chemical Communications, 2007, , 2811.	2.2	35
111	Angle-dependent resonance of localized and propagating surface plasmons in microhole arrays for enhanced biosensing. Analytical and Bioanalytical Chemistry, 2012, 404, 2859-2868.	1.9	35
112	An investigation into the simultaneous enzymatic and SERRS properties of silver nanoparticles. Analyst, The, 2013, 138, 6347.	1.7	35
113	1064 nm SERS of NIR active hollow gold nanotags. Physical Chemistry Chemical Physics, 2015, 17, 1980-1986.	1.3	35
114	Molecular imaging of atherosclerosis: spotlight on Raman spectroscopy and surface-enhanced Raman scattering. Heart, 2018, 104, 460-467.	1.2	35
115	SERRS detection of PNA and DNA labelled with a specifically designed benzotriazole azo dye. Chemical Communications, 2001, , 1002-1003.	2.2	33
116	Fabricating protein immunoassay arrays on nitrocellulose using Dip-pen lithography techniques. Analyst, The, 2011, 136, 2925.	1.7	33
117	Internal labeling of oligonucleotide probes by Diels–Alder cycloaddition. Tetrahedron Letters, 2002, 43, 4785-4788.	0.7	32
118	From Micro to Nano:Â Analysis of Surface-Enhanced Resonance Raman Spectroscopy Active Sites via Multiscale Correlations. Analytical Chemistry, 2006, 78, 224-230.	3.2	32
119	Growth and surface-enhanced Raman scattering of Ag nanoparticle assembly in agarose gel. Measurement Science and Technology, 2012, 23, 084006.	1.4	32
120	Identification and Characterization of Active and Inactive Species for Surface-Enhanced Resonance Raman Scattering. Journal of Physical Chemistry B, 2005, 109, 3454-3459.	1.2	31
121	Dynamic Imaging Analysis of SERS-Active Nanoparticle Clusters in Suspension. Journal of Physical Chemistry C, 2010, 114, 18115-18120.	1.5	31
122	Rapid prototyping of poly(dimethoxysiloxane) dot arrays by dip-pen nanolithography. Chemical Science, 2011, 2, 211-215.	3.7	31
123	Ordered Silver and Copper Nanorod Arrays for Enhanced Raman Scattering Created via Guided Oblique Angle Deposition on Polymer. Journal of Physical Chemistry C, 2014, 118, 4878-4884.	1.5	31
124	Analysis of intracellular enzyme activity by surface enhanced Raman scattering. Analyst, The, 2013, 138, 6331.	1.7	30
125	Detection of DNA probes using Diels Alder cycloaddition and SERRS. Analyst, The, 2003, 128, 692.	1.7	29
126	A TEM and electron energy loss spectroscopy (EELS) investigation of active and inactive silver particles for surface enhanced resonance Raman spectroscopy (SERRS). Faraday Discussions, 2006, 132, 171-178.	1.6	29

#	Article	IF	CITATIONS
127	Synthesis, characterization and luminescence studies of gold(I)–NHC amide complexes. Beilstein Journal of Organic Chemistry, 2013, 9, 2216-2223.	1.3	29
128	Tracking intracellular uptake and localisation of alkyne tagged fatty acids using Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 197, 30-36.	2.0	29
129	8-Hydroxyquinolinyl Azo Dyes:  A Class of Surface-Enhanced Resonance Raman Scattering-Based Probes for Ultrasensitive Monitoring of Enzymatic Activity. Analytical Chemistry, 2007, 79, 8578-8583.	3.2	28
130	SERRS dyes. Analyst, The, 2004, 129, 69.	1.7	27
131	Improved Versatility of Silver Nanoparticle Dimers for Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 13249-13254.	1.5	27
132	Micro-/nano-patterning of DNA and rapid readout with SERS tags. Chemical Communications, 2010, 46, 5292.	2.2	27
133	The optimisation of facile substrates for surface enhanced Raman scattering through galvanic replacement of silver onto copper. Analyst, The, 2012, 137, 2791.	1.7	27
134	Theory of SERS enhancement: general discussion. Faraday Discussions, 2017, 205, 173-211.	1.6	27
135	A new class of ratiometric small molecule intracellular pH sensors for Raman microscopy. Analyst, The, 2020, 145, 5289-5298.	1.7	27
136	Synthesis of Unique Nanostructures with Novel Optical Properties Using Oligonucleotide Mixed–Metal Nanoparticle Conjugates. Small, 2008, 4, 1054-1057.	5.2	26
137	Rapid Raman mapping for chocolate analysis. Analytical Methods, 2010, 2, 1230.	1.3	26
138	Multiplex imaging of live breast cancer tumour models through tissue using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS). Chemical Communications, 2018, 54, 8530-8533.	2.2	26
139	Simultaneous multianalyte identification of molecular species involved in terrorism using Raman spectroscopy. IEEE Sensors Journal, 2005, 5, 632-640.	2.4	25
140	Oligonucleotide conjugation to a cell-penetrating (TAT) peptide by Diels–Alder cycloaddition. Organic and Biomolecular Chemistry, 2008, 6, 3781.	1.5	25
141	Selective phase growth and precise-layer control in MoTe2. Communications Materials, 2020, 1, .	2.9	25
142	Detection of Estrogen Receptor Alpha and Assessment of Fulvestrant Activity in MCF-7 Tumor Spheroids Using Microfluidics and SERS. Analytical Chemistry, 2021, 93, 5862-5871.	3.2	25
143	The first controlled reduction of the high explosive RDXElectronic supplementary information (ESI) available: full experimental details on the synthesis and analysis of the reported compounds. See http://www.rsc.org/suppdata/cc/b2/b207885f/. Chemical Communications, 2002, , 2514-2515.	2.2	24
144	DNA detection by SERS: hybridisation parameters and the potential for asymmetric PCR. Analyst, The, 2020, 145, 1871-1877.	1.7	24

#	Article	IF	CITATIONS
145	Immunoassay for P38 MAPK using surface enhanced resonance Raman spectroscopy (SERRS). Analyst, The, 2008, 133, 791.	1.7	23
146	Rapid cell mapping using nanoparticles and SERRS. Analyst, The, 2009, 134, 170-175.	1.7	23
147	Functionalisation of hollow gold nanospheres for use as stable, red-shifted SERS nanotags. Nanoscale, 2015, 7, 6075-6082.	2.8	23
148	Surface enhanced resonance Raman spectroscopy (SERRS) for probing through plastic and tissue barriers using a handheld spectrometer. Analyst, The, 2018, 143, 5965-5973.	1.7	23
149	Rapid ultra-sensitive diagnosis of <i>clostridium difficile</i> infection using a SERS-based lateral flow assay. Analyst, The, 2021, 146, 4495-4505.	1.7	23
150	Surface enhanced Raman scattering for the multiplexed detection of pathogenic microorganisms: towards point-of-use applications. Analyst, The, 2021, 146, 6084-6101.	1.7	23
151	In situ detection of pterins by SERS. Analyst, The, 2009, 134, 1561.	1.7	22
152	Surface-enhanced Raman scattering as a detection technique for molecular diagnostics. Expert Review of Molecular Diagnostics, 2009, 9, 537-539.	1.5	22
153	Nanoscale definition of substrate materials to direct human adult stem cells towards tissue specific populations. Journal of Materials Science: Materials in Medicine, 2010, 21, 1021-1029.	1.7	22
154	Stable dye-labelled oligonucleotide-nanoparticle conjugates for nucleic acid detection. Nanoscale, 2011, 3, 3221.	2.8	22
155	Nanosensing protein allostery using a bivalent mouse double minute two (MDM2) assay. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8073-8078.	3.3	22
156	SERS in biology/biomedical SERS: general discussion. Faraday Discussions, 2017, 205, 429-456.	1.6	22
157	Synthesis of a benzotriazole azo dye phosphoramidite for labelling of oligonucleotides. Tetrahedron Letters, 2003, 44, 1339-1342.	0.7	21
158	SERRS dyes : Part 3. Synthesis of reactive benzotriazole azo dyes for surface enhanced resonance Raman scattering. Analyst, The, 2004, 129, 975.	1.7	21
159	SERRS coded nanoparticles for biomolecular labelling with wavelength-tunable discrimination. Analyst, The, 2009, 134, 549-556.	1.7	21
160	Mitokyne: A Ratiometric Raman Probe for Mitochondrial pH. Analytical Chemistry, 2021, 93, 12786-12792.	3.2	21
161	Role of molecular diagnostics in forensic science. Expert Review of Molecular Diagnostics, 2002, 2, 346-353.	1.5	20
162	Mixed metal nanoparticle assembly and the effect on surface-enhanced Raman scattering. Nanoscale, 2010, 2, 78-80.	2.8	20

#	Article	IF	CITATIONS
163	Ratiometric sensing of fluoride ions using Raman spectroscopy. Chemical Communications, 2020, 56, 14463-14466.	2.2	20
164	Selfâ€Complementary Zwitterionic Peptides Direct Nanoparticle Assembly and Enable Enzymatic Selection of Endocytic Pathways. Advanced Materials, 2022, 34, e2104962.	11.1	20
165	Quantitative surface-enhanced resonance Raman scattering of phthalocyanine-labelled oligonucleotides. Nucleic Acids Research, 2007, 35, e42-e42.	6.5	19
166	Quantitation of biomolecules conjugated to nanoparticles by enzyme hydrolysis. Chemical Communications, 2009, , 2872.	2.2	19
167	Functionalized nanoparticles for bioanalysis by SERRS. Biochemical Society Transactions, 2009, 37, 697-701.	1.6	19
168	Conjugation of an oligonucleotide to Tat, a cell-penetrating peptide, via click chemistry. Tetrahedron Letters, 2010, 51, 5032-5034.	0.7	19
169	Turning up the lights—fabrication of brighter SERRS nanotags. Chemical Communications, 2010, 46, 5247.	2.2	19
170	Synthesis of SERS active nanoparticles for detection of biomolecules. Tetrahedron, 2012, 68, 1230-1240.	1.0	19
171	Elucidation of the bonding of a near infrared dye to hollow gold nanospheres – a chalcogen tripod. Chemical Science, 2016, 7, 5160-5170.	3.7	19
172	Sensitive SERS nanotags for use with 1550 nm (retina-safe) laser excitation. Analyst, The, 2016, 141, 5062-5065.	1.7	19
173	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugs. Chemical Science, 2018, 9, 6935-6943.	3.7	19
174	Stimulated Raman scattering microscopy with spectral phasor analysis: applications in assessing drug–cell interactions. Chemical Science, 2022, 13, 3468-3476.	3.7	19
175	Visual Observations of SERRS from Single Silver-Coated Silica Microparticles within Optical Tweezers. Angewandte Chemie - International Edition, 2004, 43, 2512-2514.	7.2	18
176	Surface-enhanced resonance Raman scattering in optical tweezers using co-axial second harmonic generation. Optics Express, 2005, 13, 4148.	1.7	18
177	Electron-deficient benzotriazoles for the selective N-acetylation of nucleosides. Tetrahedron Letters, 2006, 47, 4201-4203.	0.7	18
178	Cycloadditions as a Method for Oligonucleotide Conjugation. Current Organic Synthesis, 2006, 3, 9-17.	0.7	18
179	Synthesis and characterisation of monodispersed silver nanoparticles with controlled size ranges. Micro and Nano Letters, 2008, 3, 62.	0.6	18
180	Squaraines as unique reporters for SERRS multiplexing. Chemical Communications, 2008, , 567-569.	2.2	18

#	Article	IF	CITATIONS
181	Correlated AFM and SERS imaging of the transition from nanotriangle to nanohole arrays. Chemical Communications, 2011, 47, 3404.	2.2	18
182	Bacterial meningitis pathogens identified in clinical samples using a SERS DNA detection assay. Analytical Methods, 2015, 7, 1269-1272.	1.3	18
183	Mixed-monolayer glyconanoparticles for the detection of cholera toxin by surface enhanced Raman spectroscopy. Nanoscale Horizons, 2016, 1, 60-63.	4.1	18
184	Through barrier detection of ethanol using handheld Raman spectroscopy—Conventional Raman versus spatially offset Raman spectroscopy (SORS). Journal of Raman Spectroscopy, 2017, 48, 1828-1838.	1.2	18
185	Raman Spectroscopy in Prostate Cancer: Techniques, Applications and Advancements. Cancers, 2022, 14, 1535.	1.7	18
186	Label-Free Imaging of Lipid Droplets in Prostate Cells Using Stimulated Raman Scattering Microscopy and Multivariate Analysis. Analytical Chemistry, 2022, 94, 8899-8908.	3.2	18
187	Precise Control of the Assembly of Dye-Coded Oligonucleotide Silver Nanoparticle Conjugates with Single Base Mismatch Discrimination Using Surface Enhanced Resonance Raman Scattering. Journal of Physical Chemistry C, 2010, 114, 7384-7389.	1.5	16
188	Plasmonic and new plasmonic materials: general discussion. Faraday Discussions, 2015, 178, 123-149.	1.6	16
189	Detection of potentially toxic metals by SERS using salen complexes. Analyst, The, 2016, 141, 5857-5863.	1.7	16
190	Preferential Attachment of Specific Fluorescent Dyes and Dye Labeled DNA Sequences in a Surface Enhanced Raman Scattering Multiplex. Analytical Chemistry, 2016, 88, 1147-1153.	3.2	16
191	Comparison of Raman and Near-Infrared Chemical Mapping for the Analysis of Pharmaceutical Tablets. Applied Spectroscopy, 2021, 75, 178-188.	1.2	16
192	Towards quantitative point of care detection using SERS lateral flow immunoassays. Analytical and Bioanalytical Chemistry, 2022, 414, 4541-4549.	1.9	16
193	The crystal structures of three primary products from the selective reduction of 2,4,6-trinitrotoluene. New Journal of Chemistry, 2004, 28, 161.	1.4	15
194	Evaluation of the number of modified bases required for quantitative SERRS from labelled DNA. Analyst, The, 2007, 132, 1100.	1.7	15
195	Controlled assembly of SERRS active oligonucleotide–nanoparticle conjugates. Chemical Communications, 2009, , 5757.	2.2	15
196	From synthetic DNA to PCR product: detection of fungal infections using SERS. Faraday Discussions, 2016, 187, 461-472.	1.6	15
197	Detection of cortisol in serum using quantitative resonance Raman spectroscopy. Analytical Methods, 2017, 9, 1589-1594.	1.3	15
198	Human papilloma virus genotyping by surface-enhanced Raman scattering. Analytical Methods, 2014, 6, 1288-1290.	1.3	14

#	Article	IF	CITATIONS
199	Rearrangement of mitochondrial pyruvate dehydrogenase subunit dihydrolipoamide dehydrogenase protein–protein interactions by the MDM2 ligand nutlinâ€3. Proteomics, 2016, 16, 2327-2344.	1.3	14
200	Analytical SERS: general discussion. Faraday Discussions, 2017, 205, 561-600.	1.6	14
201	Dynamic pH measurements of intracellular pathways using nano-plasmonic assemblies. Analyst, The, 2020, 145, 5768-5775.	1.7	14
202	From Raman to SESORRS: moving deeper into cancer detection and treatment monitoring. Chemical Communications, 2021, 57, 12436-12451.	2.2	14
203	The Electronic Effects on the Formation of N-Arylmaleimides and isomaleimides. Heterocycles, 2003, 60, 2305.	0.4	13
204	Quantitative Surface-Enhanced Resonance Raman Spectroscopy for Analysis. , 2006, , 381-396.		13
205	Sensitive SERS nanotags for use with a hand-held 1064 nm Raman spectrometer. Royal Society Open Science, 2017, 4, 170422.	1.1	13
206	Depth prediction of nanotags in tissue using surface enhanced spatially offset Raman scattering (SESORS). Chemical Communications, 2022, 58, 1756-1759.	2.2	13
207	Benzotriazole rhodamine B: effect of adsorption on surface-enhanced resonance Raman scattering. Journal of Raman Spectroscopy, 2005, 36, 45-49.	1.2	12
208	Investigation of enzyme activity by SERRS using poly-functionalised benzotriazole derivatives as enzyme substrates. Organic and Biomolecular Chemistry, 2006, 4, 2869.	1.5	12
209	Single molecule level detection of allophycocyanin by surface enhanced resonance Raman scattering. Analyst, The, 2007, 132, 633.	1.7	12
210	Dip-pen nanolithography and SERRS as synergic techniques. Chemical Communications, 2008, , 5734.	2.2	12
211	Improved biocompatibility of protein encapsulation in sol–gel materials. Journal of Sol-Gel Science and Technology, 2009, 49, 380-384.	1.1	12
212	Bayesian methods to detect dye-labelled DNA oligonucleotides in multiplexed Raman spectra. Journal of the Royal Statistical Society Series C: Applied Statistics, 2011, 60, 187-206.	0.5	12
213	Microscale mesoarrays created by dip-pen nanolithography for screening of protein–protein interactions. Biosensors and Bioelectronics, 2011, 26, 4667-4673.	5.3	12
214	Immunoassay Arrays Fabricated by Dip-Pen Nanolithography with Resonance Raman Detection. Analytical Chemistry, 2013, 85, 5617-5621.	3.2	12
215	Interaction of fluorescent dyes with DNA and spermine using fluorescence spectroscopy. Analyst, The, 2014, 139, 3735-3743.	1.7	12
216	Determination of metal ion concentrations by SERS using 2,2′-bipyridyl complexes. Analyst, The, 2015, 140, 6538-6543.	1.7	12

#	Article	IF	CITATIONS
217	THEM6â€mediated reprogramming of lipid metabolism supports treatment resistance in prostate cancer. EMBO Molecular Medicine, 2022, 14, e14764.	3.3	12
218	Synthesis of a benzotriazole phosphoramidite for attachment of oligonucleotides to metal surfaces. Tetrahedron Letters, 2001, 42, 2197-2200.	0.7	11
219	TNT stilbene derivatives as SERRS active species. Analyst, The, 2007, 132, 986.	1.7	11
220	Protein–nanoparticle labelling probed by surface enhanced resonance Raman spectroscopy. Analyst, The, 2007, 132, 865.	1.7	11
221	Multidentate macromolecules for functionalisation, passivation and labelling of metal nanoparticles. Chemical Communications, 2008, , 2517.	2.2	11
222	Deciphering Surface Enhanced Raman Scattering Activity of Gold Nanoworms through Optical Correlations. Journal of Physical Chemistry C, 2011, 115, 20515-20522.	1.5	11
223	Qualitative SERS analysis of G-quadruplex DNAs using selective stabilising ligands. Analyst, The, 2014, 139, 4458-4465.	1.7	11
224	Ultrasensitive and towards single molecule SERS: general discussion. Faraday Discussions, 2017, 205, 291-330.	1.6	11
225	Controlled Synthesis of Electron Deficient Nitro-1H-benzotriazoles. Heterocycles, 2002, 57, 1461.	0.4	10
226	Thermoresponsive Polymer Micropatterns Fabricated by Dip-Pen Nanolithography for a Highly Controllable Substrate with Potential Cellular Applications. ACS Applied Materials & Interfaces, 2016, 8, 24844-24852.	4.0	10
227	Towards establishing a minimal nanoparticle concentration for applications involving surface enhanced spatially offset resonance Raman spectroscopy (SESORRS) <i>in vivo</i> . Analyst, The, 2018, 143, 5358-5363.	1.7	10
228	Benzotriazole maleimide as a bifunctional reactant for SERS. Perkin Transactions II RSC, 2001, , 2136-2141.	1.1	9
229	SERRS-active nanoparticle-polymer beads for ultra-sensitive biodiagnostic applications. Micro and Nano Letters, 2006, 1, 57.	0.6	9
230	A density functional theory and resonance Raman study of a benzotriazole dye used in surface enhanced resonance Raman scattering. Journal of Molecular Structure, 2006, 789, 59-70.	1.8	9
231	Functionalized nanoparticles for nucleic acid sequence analysis using optical spectroscopies. Biochemical Society Transactions, 2009, 37, 441-444.	1.6	9
232	Dip-pen nanolithography of nanostructured oligofluorene truxenes in a photo-curable host matrix. Journal of Materials Chemistry, 2011, 21, 14209.	6.7	9
233	Design Consideration for Surface-Enhanced (Resonance) Raman Scattering Nanotag Cores. Journal of Physical Chemistry C, 2012, 116, 2677-2682.	1.5	9
234	Template-directed synthesis of uniformly-sized silver nanoparticles with high colloidal stability. New Journal of Chemistry, 2013, 37, 3591.	1.4	9

#	Article	IF	CITATIONS
235	Resonance Raman scattering of catalytic beacons for DNA detection. Chemical Communications, 2013, 49, 3206.	2.2	9
236	Engineering DNA Binding Sites to Assemble and Tune Plasmonic Nanostructures. Advanced Materials, 2014, 26, 4286-4292.	11.1	9
237	Analysis of enzyme-responsive peptide surfaces by Raman spectroscopy. Chemical Communications, 2016, 52, 4698-4701.	2.2	9
238	Development of a label-free Raman imaging technique for differentiation of malaria parasite infected from non-infected tissue. Analyst, The, 2018, 143, 157-163.	1.7	9
239	Modulation of interparticle gap for enhanced SERS sensitivity in chemically stable Ag@Au hetero-architectures. New Journal of Chemistry, 2020, 44, 13843-13851.	1.4	9
240	Characterisation of estrogen receptor alpha (ERα) expression in breast cancer cells and effect of drug treatment using targeted nanoparticles and SERS. Analyst, The, 2020, 145, 7225-7233.	1.7	9
241	Tomographic Imaging and Localization of Nanoparticles in Tissue Using Surface-Enhanced Spatially Offset Raman Spectroscopy. ACS Applied Materials & Interfaces, 2022, 14, 31613-31624.	4.0	9
242	Quantification of Functionalised Gold Nanoparticle-Targeted Knockdown of Gene Expression in HeLa Cells. PLoS ONE, 2014, 9, e99458.	1.1	8
243	Laser induced SERS switching using plasmonic heating of PNIPAM coated HGNs. Chemical Communications, 2015, 51, 8138-8141.	2.2	8
244	A SERRS-Active Bead/Microelectromagnet System for Small-Scale Sensitive Molecular Identification and Quantitation. Small, 2007, 3, 1394-1397.	5.2	7
245	SERS enhancement of silver nanoparticles prepared by a template-directed triazole ligand strategy. Chemical Communications, 2015, 51, 13028-13031.	2.2	7
246	Resonance Raman detection of antioxidants using an iron oxide nanoparticle catalysed decolourisation assay. Analyst, The, 2017, 142, 4715-4720.	1.7	7
247	Raman spectroscopic analysis of skin as a diagnostic tool for Human African Trypanosomiasis. PLoS Pathogens, 2021, 17, e1010060.	2.1	7
248	The synthesis and first full structural elucidation of a benzotriazole azo dye. Journal of Heterocyclic Chemistry, 2000, 37, 1555-1558.	1.4	6
249	Imaging inflammation in real time—future of nanoparticles. Autoimmunity, 2009, 42, 368-372.	1.2	6
250	DNA nanofabrication by scanning near-field photolithography of oligo(ethylene glycol) terminated SAMs: Controlled scan-rate dependent switching between head group oxidation and tail group degradation. Journal of Materials Chemistry, 2011, 21, 14173.	6.7	6
251	Enhancing the SERS properties of nanoworms by matrix formation. Analyst, The, 2012, 137, 2297.	1.7	6
252	Chemiluminescence detection of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and related nitramine explosives. Talanta, 2012, 88, 743-748.	2.9	6

#	Article	IF	CITATIONS
253	Analysis of Photothermal Release of Oligonucleotides from Hollow Cold Nanospheres by Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2016, 120, 20677-20683.	1.5	6
254	Thioctic acid modification of oligonucleotides using an H-phosphonate. Tetrahedron Letters, 2010, 51, 5787-5790.	0.7	5
255	Ferric plasmonic nanoparticles, aptamers, and magnetofluidic chips: toward the development of diagnostic surface-enhanced Raman spectroscopy assays. Journal of Biomedical Optics, 2016, 21, 127005.	1.4	5
256	Organic Semiconductor Laser Platform for the Detection of DNA by AgNP Plasmonic Enhancement. Langmuir, 2018, 34, 14766-14773.	1.6	5
257	Introducing 12 new dyes for use with oligonucleotide functionalised silver nanoparticles for DNA detection with SERS. RSC Advances, 2018, 8, 17685-17693.	1.7	5
258	Evaluation of laser direct infrared imaging for rapid analysis of pharmaceutical tablets. Analytical Methods, 2022, 14, 1862-1871.	1.3	5
259	From Metalloproteins to Coordination Chemistry: A Learning Exercise To Teach Transition Metal Chemistry. Journal of Chemical Education, 2004, 81, 76.	1.1	4
260	Nanometrology—is it the next big thing in measurement?. Analyst, The, 2007, 132, 95-96.	1.7	4
261	Threeâ€dimensional imaging of pharmaceutical tablets using serial sectioning and Raman chemical mapping. Journal of Raman Spectroscopy, 2022, 53, 1115-1125.	1.2	4
262	Detection of a miRNA biomarker for cancer diagnosis using SERS tags and magnetic separation. Analytical Methods, 2022, 14, 1938-1945.	1.3	4
263	Selective Protection of 5-Aminobenzo- triazole for Controlled Reaction at the Primary Amine. Heterocycles, 2002, 57, 1227.	0.4	3
264	p-Nitrophenylmaleimide. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o1717-o1718.	0.2	3
265	Improving the understanding of oligonucleotide–nanoparticle conjugates using DNA-binding fluorophores. Nanoscale, 2013, 5, 4166.	2.8	3
266	Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion. Faraday Discussions, 2015, 178, 253-279.	1.6	3
267	Investigation of Silver Nanoparticle Assembly Following Hybridization with Different Lengths of DNA. Particle and Particle Systems Characterization, 2016, 33, 404-411.	1.2	3
268	Comparison of Fe2O3and Fe2CoO4core-shell plasmonic nanoparticles for aptamer mediated SERS assays. , 2016, , .		3
269	Aptamer conjugated silver nanoparticles for the detection of interleukin 6. Proceedings of SPIE, 2016, ,	0.8	3
270	SERS nanotags for folate receptor α detection at the single cell level: discrimination of overexpressing cells and potential for live cell applications. Analyst, The, 2022, 147, 3328-3339.	1.7	3

#	Article	IF	CITATIONS
271	Fabrication of biosensor arrays via DPN and detection by surface enhanced resonance Raman scattering. Proceedings of SPIE, 2008, , .	0.8	2
272	Written with light. Nature Nanotechnology, 2010, 5, 629-630.	15.6	2
273	Advanced markers and labels for life science and biomedical applications. Journal of Biophotonics, 2011, 4, 375-376.	1.1	2
274	ConA-based glucose sensing using the long-lifetime azadioxatriangulenium fluorophore. Proceedings of SPIE, 2014, , .	0.8	2
275	SERS active colloidal nanoparticles for the detection of small blood biomarkers using aptamers. Proceedings of SPIE, 2015, , .	0.8	2
276	Advances in Biofunctional SERS-Active Nanoparticles for Future Clinical Diagnostics and Therapeutics. ACS Symposium Series, 2016, , 131-161.	0.5	2
277	The First Controlled Reduction of the High Explosive RDX ChemInform, 2003, 34, no.	0.1	1
278	Surface enhanced resonance Raman scattering detection by fluorimeter. Analyst, The, 2005, 130, 472.	1.7	1
279	Distance detection using Raman scattering: a new tagging technology. , 2006, , .		1
280	Editorial – a light diagnosis. Analyst, The, 2009, 134, 1027.	1.7	1
281	Surface-Enhanced Raman Scattering (SERS), Applications. , 2017, , 389-395.		1
282	Utilizing Raman Spectroscopy as a Tool for Solid- and Solution-Phase Analysis of Metalloorganic Cage Host–Guest Complexes. Inorganic Chemistry, 2022, , .	1.9	1
283	<title>Detection of DNA and P-450s on silver colloidal nanoparticles by surface-enhanced resonance Raman scattering (SERRS)</title> . , 2001, , .		0
284	Determining biomolecular structures by time-resolved fluorescence. , 2006, , .		0
285	Single and double stranded DNA detection using locked nucleic acid (LNA) functionalized nanoparticles. , 2008, , .		0
286	DPN writing on non-flat gold surfaces and detection by SERS. , 2009, , .		0
287	Functionalised nanoparticles and SERRS for bioanalysis. , 2009, , .		0
288	Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS). , 2009, , .		0

17

#	Article	IF	CITATIONS
289	Methods for nanoparticle labeling of ricin and effect on toxicity. , 2009, , .		0
290	Controlled SERRS Using Biologically Driven Nanoparticle Assembly. , 2010, , .		0
291	Raman Microspectroscopy Mapping Of Chocolate. , 2010, , .		0
292	Silver Nanoparticle Dimers In Solution, Brighter Nanotags And Substrates For SMD. , 2010, , .		0
293	DNA Sequence Detection Using Surface Enhanced Resonance Raman Spectroscopy (SERRS) in a Homogeneous Multiplexed Assay. , 2010, , .		0
294	Functionalisation, Characterization, and Application of Metal Nanoparticles for Bioanalysis. ACS Symposium Series, 2012, , 33-58.	0.5	0
295	CHAPTER 11. Nucleic Acid–Nanoparticle Conjugate Sensors for Use with Surface Enhanced Resonance Raman Scattering (SERRS). RSC Biomolecular Sciences, 2012, , 258-277.	0.4	0
296	A new look for a New Year. Analyst, The, 2014, 139, 15-16.	1.7	0
297	Plasmonics: Engineering DNA Binding Sites to Assemble and Tune Plasmonic Nanostructures (Adv.) Tj ETQq1 1 0	.784314 r	gBT /Overloc
298	38â€The development of a three-dimensional culture system for <i>in vitro</i> studies of the atheroma. Heart, 2015, 101, A12.4-A13.	1.2	0
299	An engineered nano-plasmonic biosensing surface for colorimetric and SERS detection of DNA-hybridization events. , 2015, , .		0
300	Raman Spectroscopy—Surface-Enhanced. , 2018, , 76-76.		0
301	Selective Detection of Deoxyribonucleic Acid at Ultra Low Concentrations By Serrs. , 1999, , 541-544.		0
302	Data processing of three-dimensional vibrational spectroscopic chemical images for pharmaceutical applications. Journal of Spectral Imaging, 0, , .	0.0	0
303	Quantitative Surface-Enhanced Resonance Raman Spectroscopy for Analysis. , 2006, , 381-396.		0