Nikita Yu Yurchenko

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5305030/nikita-yu-yurchenko-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

45	1,774	19	42
papers	citations	h-index	g-index
46 ext. papers	2,322 ext. citations	3.7 avg, IF	5.21 L-index

#	Paper	IF	Citations
45	Unique precipitations in a novel refractory Nb-Mo-Ti-Co high-entropy superalloy. <i>Materials Research Letters</i> , 2022 , 10, 78-87	7.4	O
44	On the yield stress anomaly in a B2-ordered refractory AlNbTiVZr0.25 high-entropy alloy. <i>Materials Letters</i> , 2022 , 311, 131584	3.3	0
43	Cross-kink unpinning controls the medium- to high-temperature strength of body-centered cubic NbTiZr medium-entropy alloy. <i>Scripta Materialia</i> , 2022 , 209, 114367	5.6	2
42	Aging behavior of two refractory Ti-Nb-(Hf, Zr)-Al high entropy alloys. <i>Journal of Alloys and Compounds</i> , 2022 , 889, 161586	5.7	1
41	Design and characterization of eutectic refractory high entropy alloys. <i>Materialia</i> , 2021 , 16, 101057	3.2	11
40	Deformation induced twinning in hcp/bcc Al10Hf25Nb5Sc10Ti25Zr25 high entropy alloy microstructure and mechanical properties. <i>Materials Science & Dinnering A: Structural Materials: Properties, Microstructure and Processing</i> , 2021 , 802, 140449	5.3	7
39	Structure and mechanical properties of near-eutectic refractory Al-Cr-Nb-Ti-Zr high entropy alloys. <i>IOP Conference Series: Materials Science and Engineering</i> , 2021 , 1014, 012058	0.4	O
38	Precipitation-hardened refractoryTi-Nb-Hf-Al-Ta high-entropy alloys. <i>IOP Conference Series:</i> Materials Science and Engineering, 2021 , 1014, 012041	0.4	2
37	Plastic deformation of solid-solution strengthened Hf-Nb-Ta-Ti-Zr body-centered cubic medium/high-entropy alloys. <i>Scripta Materialia</i> , 2021 , 200, 113927	5.6	10
36	Effect of multiaxial deformation on structure, mechanical properties, and corrosion resistance of a Mg-Ca alloy. <i>Journal of Magnesium and Alloys</i> , 2021 ,	8.8	1
35	Refractory high entropy alloy with ductile intermetallic B2 matrix / hard bcc particles and exceptional strain hardening capacity. <i>Materialia</i> , 2021 , 20, 101225	3.2	5
34	Design and Characterization of Al-Cr-Nb-Ti-V-Zr High-Entropy Alloys for High-Temperature Applications. <i>Physical Mesomechanics</i> , 2021 , 24, 642-652	1.6	0
33	Microstructure and Mechanical Properties Evolution in HfNbTaTiZr Refractory High-Entropy Alloy During Cold Rolling. <i>Advanced Engineering Materials</i> , 2020 , 22, 2000105	3.5	12
32	Creep behavior of an AlTiVNbZr0.25 high entropy alloy at 1073 K. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2020 , 783, 139291	5.3	6
31	Microband-induced plasticity in a Ti-rich high-entropy alloy. <i>Journal of Alloys and Compounds</i> , 2020 , 842, 155868	5.7	11
30	A new refractory Ti-Nb-Hf-Al high entropy alloy strengthened by orthorhombic phase particles. <i>International Journal of Refractory Metals and Hard Materials</i> , 2020 , 92, 105322	4.1	13
29	Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite. <i>Materials Letters</i> , 2020 , 264, 127372	3.3	19

(2017-2020)

Structures and mechanical properties of Ti-Nb-Cr-V-Ni-Al refractory high entropy alloys. <i>Materials Science & Microstructure and Processing</i> , 2020 , 786, 139409	5.3	17
Gum-like mechanical behavior of a partially ordered Al5Nb24Ti40V5Zr26 high entropy alloy. <i>Intermetallics</i> , 2020 , 116, 106652	3.5	14
Improving the property profile of a bioresorbable Mg-Y-Nd-Zr alloy by deformation treatments. <i>Materialia</i> , 2020 , 13, 100841	3.2	11
Microstructure evolution of a novel low-density Tillr NbV refractory high entropy alloy during cold rolling and subsequent annealing. <i>Materials Characterization</i> , 2019 , 158, 109980	3.9	21
Laser Beam Welding of a Low Density Refractory High Entropy Alloy. <i>Metals</i> , 2019 , 9, 1351	2.3	9
Mechanical Properties, Biodegradation, and Biocompatibility of Ultrafine Grained Magnesium Alloy WE43. <i>Materials</i> , 2019 , 12,	3.5	18
Structure and hardness of B2 ordered refractory AlNbTiVZr0.5 high entropy alloy after high-pressure torsion. <i>Materials Science & Discourse A: Structural Materials: Properties, Microstructure and Processing</i> , 2018 , 716, 308-315	5.3	19
Aging behavior of the HfNbTaTiZr high entropy alloy. <i>Materials Letters</i> , 2018 , 211, 87-90	3.3	92
Evolution of Microstructure and Mechanical Properties of a CoCrFeMnNi High-Entropy Alloy during High-Pressure Torsion at Room and Cryogenic Temperatures. <i>Metals</i> , 2018 , 8, 123	2.3	26
Effect of Cr and Zr on phase stability of refractory Al-Cr-Nb-Ti-V-Zr high-entropy alloys. <i>Journal of Alloys and Compounds</i> , 2018 , 757, 403-414	5.7	43
Study of the Structure Formation during Compression for Selecting Multiaxial Deformation Conditions for an Mgta Alloy. <i>Russian Metallurgy (Metally)</i> , 2018 , 2018, 1046-1058	0.5	1
Oxidation Behavior of Refractory AlNbTiVZr High-Entropy Alloy. <i>Materials</i> , 2018 , 11,	3.5	15
Laves-phase formation criterion for high-entropy alloys. <i>Materials Science and Technology</i> , 2017 , 33, 17-	22 5	75
Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 194, 012004	0.4	24
Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling. <i>Materials</i> , 2017 , 11,	3.5	61
Structure and mechanical properties of B2 ordered refractory AlNbTiVZr x (x = 01.5) high-entropy alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 704, 82-90	5.3	103
Precipitation-strengthened refractory Al 0.5 CrNbTi 2 V 0.5 high entropy alloy. <i>Materials Letters</i> , 2017 , 188, 162-164	3.3	63
Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy. <i>Journal of Alloys and Compounds</i> , 2017 , 693, 394-405	5·7	122
	Science & Description (2020), 786, 139409 Gum-like mechanical behavior of a partially ordered AlSNb24Ti40V5Zr26 high entropy alloy. Intermetallics, 2020, 116, 106652 Improving the property profile of a bioresorbable Mg-Y-Nd-Zr alloy by deformation treatments. Materialia, 2020, 13, 100841 Microstructure evolution of a novel low-density TiltrBbD refractory high entropy alloy during cold rolling and subsequent annealing. Materials Characterization, 2019, 158, 109980 Laser Beam Welding of a Low Density Refractory High Entropy Alloy. Metals, 2019, 9, 1351 Mechanical Properties, Biodegradation, and Biocompatibility of Ultrafine Grained Magnesium Alloy WE43. Materials, 2019, 12, Structure and hardness of B2 ordered refractory AlNbTiVZr0.5 high entropy alloy after high-pressure torsion. Materials Science & Description of the HfNbTaTiZr high entropy alloy. Materials Letters, 2018, 211, 87-90 Evolution of Microstructure and Mechanical Properties of a CocrFeMnNi High-Entropy Alloy during High-Pressure Torsion at Room and Cryogenic Temperatures. Metals, 2018, 123 Effect of Cr and Zr on phase stability of refractory Al-Cr-Nb-Ti-V-Zr high-entropy alloys. Journal of Alloys and Compounds, 2018, 757, 403-414 Study of the Structure Formation during Compression for Selecting Multiaxial Deformation Conditions for an MgTa Alloy. Russian Metallurgy (Metally), 2018, 2018, 1046-1058 Oxidation Behavior of Refractory AlNbTiVZr High-Entropy Alloy. Materials Science and Technology, 2017, 33, 17-81, 1940-1059. Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation. IOP Conference Series: Materials Science and Engineering, 2017, 194, 102004 Microstructure and Mechanical Properties Evolution of the Al, C-Containing CocrFeNiMn-Type High-Entropy Alloy during Cold Rolling. Materials, 2017, 11, Structure and mechanical properties of B2 ordered refractory AlNbTiVZr x (x = 03.5) high-entropy alloys. Materials Science & Amp; Engineering A-Structural Materi	Science & Description of the Company of the Hospital Structural Materials: Properties, Microstructure and Processing, 2020, 15-33. Microstructure evolution of a novel low-density TIETRIND refractory high entropy alloy during cold rolling and subsequent annealing. Materials Characterization, 2019, 158, 109980. Mechanical Properties, Biodegradation, and Biocompatibility of Ultrafine Grained Magnesium Alloy Wet3. Materials, 2019, 12. Structure and hardness of B2 ordered refractory AlNbTIVZr. Shigh entropy alloy after high-pressure torsion. Materials Ceinece & Amp: Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 308-315. Aging behavior of the HfNbTaTiZr high entropy alloy. Materials Letters, 2018, 211, 87-90. 33. Effect of Cr and Zr on phase stability of refractory Al-Cr-Nb-Ti-V-Zr high-entropy alloys. Journal of Alloys and Compounds, 2018, 757, 403-414. Study of the Structure Formation during Compression for Selecting Multiaxial Deformation Conditions for an MgCa Alloy. Russian Metallurgy (Metally), 2018, 2018, 114, 35. Laves-phase formation criterion for high-entropy alloys. Materials Science and Technology, 2017, 33, 17-225. Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation. IOP Conference Series: Materials Science and Engineering, 2017, 134, 1012004. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling. Materials, 2017, 11, 11, 11, 11, 11, 11, 11, 11, 11,

10	Microstructure Refinement in the CoCrFeNiMn High Entropy Alloy under Plastic Straining. <i>Materials Science Forum</i> , 2016 , 879, 1853-1858	0.4	2
9	Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys. <i>Journal of Alloys and Compounds</i> , 2016 , 687, 59-71	5.7	153
8	Phase Evolution of the AlxNbTiVZr (x = 0; 0.5; 1; 1.5) High Entropy Alloys. <i>Metals</i> , 2016 , 6, 298	2.3	16
7	Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr ($x = 0$; 0.25; 0.5; 1) high-entropy alloys. <i>Materials Characterization</i> , 2016 , 121, 125-134	3.9	77
6	Effect of Al on structure and mechanical properties of AlxNbTiVZr ($x = 0, 0.5, 1, 1.5$) high entropy alloys. <i>Materials Science and Technology</i> , 2015 , 31, 1184-1193	1.5	64
5	High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 636, 188-195	5.3	156
4	Structure and mechanical properties of the AlCrxNbTiV ($x = 0, 0.5, 1, 1.5$) high entropy alloys. Journal of Alloys and Compounds, 2015 , 652, 266-280	5.7	134
3	An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility. <i>Materials Letters</i> , 2015 , 161, 136-139	3.3	71
2	Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. <i>Intermetallics</i> , 2015 , 59, 8-17	3.5	259
1	Effect of multiaxial forging on microstructure and mechanical properties of Mg-o.8Ca alloy. <i>IOP Conference Series: Materials Science and Engineering</i> , 2014 , 63, 012075	0.4	6