
Vishal Rai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5304788/publications.pdf Version: 2024-02-01

Λιςμλι Ρλι

#	Article	IF	CITATIONS
1	Small Heterocycles in Multicomponent Reactions. Chemical Reviews, 2014, 114, 8323-8359.	47.7	790
2	Macrocyclization of Linear Peptides Enabled by Amphoteric Molecules. Journal of the American Chemical Society, 2010, 132, 2889-2891.	13.7	215
3	Single-Site Labeling of Native Proteins Enabled by a Chemoselective and Site-Selective Chemical Technology. Journal of the American Chemical Society, 2018, 140, 15114-15123.	13.7	104
4	Synchronized Synthesis of Peptideâ€Based Macrocycles by Digital Microfluidics. Angewandte Chemie - International Edition, 2010, 49, 8625-8629.	13.8	92
5	Single-site glycine-specific labeling of proteins. Nature Communications, 2019, 10, 2539.	12.8	61
6	Chemoselective and Site‧elective Lysineâ€Directed Lysine Modification Enables Single‧ite Labeling of Native Proteins. Angewandte Chemie - International Edition, 2020, 59, 10332-10336.	13.8	49
7	Enantioselective conjugate addition of dialkyl phosphites to nitroalkenes. Tetrahedron: Asymmetry, 2008, 19, 2335-2338.	1.8	47
8	Chemical methods for modification of proteins. Organic and Biomolecular Chemistry, 2020, 18, 4669-4691.	2.8	47
9	Synthesis of peptide macrocycles using unprotected amino aldehydes. Nature Protocols, 2010, 5, 1813-1822.	12.0	46
10	Single-site labeling of lysine in proteins through a metal-free multicomponent approach. Chemical Communications, 2018, 54, 7302-7305.	4.1	42
11	Siteâ€Selective Labeling of Native Proteins by a Multicomponent Approach. Chemistry - A European Journal, 2017, 23, 3819-3823.	3.3	41
12	Chemical Methods for Selective Labeling of Proteins. European Journal of Organic Chemistry, 2019, 2019, 6749-6763.	2.4	41
13	A phthalimidation protocol that follows protein defined parameters. Chemical Communications, 2015, 51, 473-476.	4.1	38
14	Single-site labeling of histidine in proteins, on-demand reversibility, and traceless metal-free protein purification. Chemical Communications, 2019, 55, 1100-1103.	4.1	36
15	Chemoselective and site-selective peptide and native protein modification enabled by aldehyde auto-oxidation. Chemical Communications, 2017, 53, 959-962.	4.1	29
16	A Theoretical Evaluation of the Michael-Acceptor Ability of Conjugated Nitroalkenes. European Journal of Organic Chemistry, 2006, 2006, 4693-4703.	2.4	26
17	Bending Rigid Molecular Rods: Formation of Oligoproline Macrocycles. Chemistry - A European Journal, 2012, 18, 15612-15617.	3.3	24
18	Linchpins empower promiscuous electrophiles to enable site-selective modification of histidine and aspartic acid in proteins. Chemical Science, 2021, 12, 6732-6736.	7.4	20

VISHAL RAI

#	Article	IF	CITATIONS
19	Computationally designed antibody–drug conjugates self-assembled via affinity ligands. Nature Biomedical Engineering, 2019, 3, 917-929.	22.5	19
20	Cinchonine catalyzed diastereo- and enantioselective Michael addition of $\hat{I}\pm$ -lithiated phosphonates to nitroalkenes. Tetrahedron: Asymmetry, 2007, 18, 2719-2726.	1.8	16
21	Chemoselective and Siteâ€Selective Lysineâ€Directed Lysine Modification Enables Singleâ€Site Labeling of Native Proteins. Angewandte Chemie, 2020, 132, 10418-10422.	2.0	16
22	Aldehydes can switch the chemoselectivity of electrophiles in protein labeling. Organic and Biomolecular Chemistry, 2018, 16, 9377-9381.	2.8	14
23	Effect of achiral and mixed chiral ligands on the asymmetric synthesis of Î ³ -nitrophosphonates via Michael addition. Tetrahedron: Asymmetry, 2008, 19, 767-772.	1.8	13
24	Protein self-assembly induces promiscuous nucleophilic biocatalysis in Morita–Baylis–Hillman (MBH) reaction. RSC Advances, 2016, 6, 208-211.	3.6	13
25	Chemical technologies for precise protein bioconjugation interfacing biology and medicine. Chemical Communications, 2021, 57, 7083-7095.	4.1	13
26	Sensitivity booster for mass detection enables unambiguous analysis of peptides, proteins, antibodies, and protein bioconjugates. Chemical Communications, 2019, 55, 9979-9982.	4.1	10
27	A single amino acid Gly-tag enables metal-free protein purification. Chemical Science, 2020, 11, 13137-13142.	7.4	10
28	Twisted amide electrophiles enable cyclic peptide sequencing. Organic and Biomolecular Chemistry, 2015, 13, 7384-7388.	2.8	9
29	Reactivity and Selectivity Principles in Native Protein Bioconjugation. Chemical Record, 2021, 21, 1941-1956.	5.8	8
30	Protein inspired chemically orthogonal imines for linchpin directed precise and modular labeling of lysine in proteins. Chemical Communications, 2022, 58, 1768-1771.	4.1	6
31	Innentitelbild: Synchronized Synthesis of Peptide-Based Macrocycles by Digital Microfluidics (Angew.) Tj ETQq1 1	0,784314 2.0	l rgBT /Over

32 Inside Cover: Synchronized Synthesis of Peptide-Based Macrocycles by Digital Microfluidics (Angew.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf