Hidetaka Sawada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5304755/publications.pdf Version: 2024-02-01

ΗΙΠΕΤΛΚΛ ΚΛΙΜΛΠΛ

#	Article	IF	CITATIONS
1	STEM and Elemental Analysis by EDS and EELS for Two-dimensional Atomic Structure Containing Au and Cu. Microscopy and Microanalysis, 2019, 25, 1776-1777.	0.4	0
2	Corrosion of Gold by a Nanoscale Gold and Copper Beltlike Structure. Journal of Physical Chemistry C, 2019, 123, 19920-19926.	3.1	2
3	Atomic Resolution Defocused Electron Ptychography at Low Dose with a Fast, Direct Electron Detector. Scientific Reports, 2019, 9, 3919.	3.3	44
4	Hollow Electron Ptychographic Diffractive Imaging. Physical Review Letters, 2018, 121, 146101.	7.8	27
5	Resolution Achievement of 40.5 pm in Scanning Transmission Electron Microscopy using 300 kV Microscope with Delta Corrector. Microscopy and Microanalysis, 2018, 24, 120-121.	0.4	6
6	Evaluation of residual aberration in fifth-order geometrical aberration correctors. Microscopy (Oxford, England), 2018, 67, 156-163.	1.5	23
7	Fast and Low-dose Electron Ptychography. Microscopy and Microanalysis, 2018, 24, 224-225.	0.4	3
8	Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector. Microscopy (Oxford, England), 2018, 67, 46-50.	1.5	51
9	Aberration measurement of the probe-forming system of an electron microscope using two-dimensional materials. Ultramicroscopy, 2017, 182, 195-204.	1.9	5
10	Characterization of thin film displacements in the electron microscope. Applied Physics Letters, 2017, 111, 203104.	3.3	0
11	Resolution enhancement in transmission electron microscopy with 60-kV monochromated electron source. Applied Physics Letters, 2016, 108, 013107.	3.3	29
12	Image transfer with spatial coherence for aberration corrected transmission electron microscopes. Ultramicroscopy, 2016, 167, 11-20.	1.9	5
13	Atomic Resolution Imaging at an Ultralow Accelerating Voltage by a Monochromatic Transmission Electron Microscope. Physical Review Letters, 2016, 117, 153004.	7.8	22
14	Resolving 45-pm-separated Si–Si atomic columns with an aberration-corrected STEM. Microscopy (Oxford, England), 2015, 64, 213-217.	1.5	38
15	Resolution enhancement at a large convergence angle by a delta corrector with a CFEG in a low-accelerating-voltage STEM. Micron, 2014, 63, 35-39.	2.2	8
16	Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy. Ultramicroscopy, 2013, 135, 71-79.	1.9	5
17	Development of Cs and Cc correctors for transmission electron microscopy. Microscopy (Oxford,) Tj ETQq1 1	0.784314 r	gBT_/Overloc
18	Element discrimination in a hexagonal boron nitride nanosheet by aberration corrected transmission electron microscopy. Ultramicroscopy, 2012, 122, 6-11.	1.9	2

HIDETAKA SAWADA

#	Article	IF	CITATIONS
19	Innovative electron microscope for light-element atom visualization. Synthesiology, 2012, 4, 172-182.	0.2	2
20	Evaluation of probe size in STEM imaging at 30 and 60kV. Micron, 2012, 43, 551-556.	2.2	14
21	Counting lithium ions in the diffusion channel of an LiV2O4 crystal. Journal of Applied Physics, 2011, 109, .	2.5	34
22	Aberration Correctors Developed Under the Triple C Project. Advances in Imaging and Electron Physics, 2011, 168, 297-336.	0.2	12
23	Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nature Materials, 2011, 10, 278-281.	27.5	313
24	Imaging the Active Surfaces of Cerium Dioxide Nanoparticles. ChemPhysChem, 2011, 12, 2397-2399.	2.1	20
25	Quantitative annular dark-field STEM images of a silicon crystal using a large-angle convergent electron probe with a 300-kV cold field-emission gun. Journal of Electron Microscopy, 2011, 60, 109-116.	0.9	30
26	Visualization of Light Elements using Annular Bright Field Imaging with a Cs-corrected Scanning Transmission Electron Microscope. Journal of the Vacuum Society of Japan, 2011, 54, 248-252.	0.3	0
27	Innovative electron microscope for light-element atom visualization. Synthesiology, 2011, 4, 166-175.	0.2	0
28	Exceeding Conventional Resolution Limits in High-Resolution Transmission Electron Microscopy Using Tilted Illumination and Exit-Wave Restoration. Microscopy and Microanalysis, 2010, 16, 409-415.	0.4	7
29	Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. Journal of Electron Microscopy, 2010, 59, S7-S13.	0.9	98
30	Direct imaging of lithium atoms in LiV2O4 by spherical aberration-corrected electron microscopy. Microscopy (Oxford, England), 2010, 59, 457-461.	1.5	76
31	STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. Journal of Electron Microscopy, 2009, 58, 357-361.	0.9	147
32	Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nature Chemistry, 2009, 1, 415-418.	13.6	152
33	Atomic Structure Imaging Beyond Conventional Resolution Limits in the Transmission Electron Microscope. Physical Review Letters, 2009, 103, 126101.	7.8	26
34	Achieving 63 pm Resolution in Scanning Transmission Electron Microscope with Spherical Aberration Corrector. Japanese Journal of Applied Physics, 2007, 46, L568-L570.	1.5	62
35	First experiments of selected area nano-diffraction from semiconductor interfaces using a spherical aberration corrected TEM. Microscopy (Oxford, England), 2005, 54, 123-126.	1.5	22
36	Atomic structure of the Σ3 and Σ9 grain boundaries in CVD diamond film. Scripta Materialia, 2004, 51, 689-692.	5.2	12

HIDETAKA SAWADA

#	Article	IF	CITATIONS
37	Imaging of a single atomic column in silicon grain boundary. Journal of Electron Microscopy, 2002, 51, 353-357.	0.9	14
38	HRTEM Image of a Diamond; metal Interface. Materia Japan, 2001, 40, 1030-1030.	0.1	0
39	Grain Boundary Structure Analysis of Covalent Bonding Materials by Atomic Resolution Transmission Electron Microscopy. Microscopy and Microanalysis, 2001, 7, 276-277.	0.4	0
40	Surface Modification of Cubic Gan Buffer Layer Grown by Metalorganic Vapor Phase Epitaxy. Materials Research Society Symposia Proceedings, 2000, 639, 3201.	0.1	0