
Chwan-Chuen King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5304751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk mapping of highly pathogenic avian influenza H5 during 2012–2017 in Taiwan with spatial bayesian modelling: Implications for surveillance and control policies. Transboundary and Emerging Diseases, 2022, 69, 385-395.	1.3	3
2	Machine learning for emerging infectious disease field responses. Scientific Reports, 2022, 12, 328.	1.6	19
3	Taiwan's Response to Influenza: A Seroepidemiological Evaluation of Policies and Implications for Pandemic Preparedness. International Journal of Infectious Diseases, 2022, , .	1.5	Ο
4	A multitope SARS-CoV-2 vaccine provides long-lasting B cell and T cell immunity against Delta and Omicron variants. Journal of Clinical Investigation, 2022, 132, .	3.9	49
5	Impact of prior infection and repeated vaccination on post-vaccination antibody titers of the influenza A(H1N1)pdm09 strain in Taiwan schoolchildren: Implications for public health. Vaccine, 2022, 40, 3402-3411.	1.7	1
6	Use of seroprevalence to guide dengue vaccination plans for older adults in a dengue non-endemic country. PLoS Neglected Tropical Diseases, 2021, 15, e0009312.	1.3	5
7	Learning from the past: Taiwan's responses to COVID-19 versus SARS. International Journal of Infectious Diseases, 2021, 110, 469-478.	1.5	14
8	FluConvert and IniFlu: a suite of integrated software to identify novel signatures of emerging influenza viruses with increasing risk. BMC Bioinformatics, 2020, 21, 316.	1.2	3
9	Interrupting COVID-19 transmission by implementing enhanced traffic control bundling: Implications for global prevention and control efforts. Journal of Microbiology, Immunology and Infection, 2020, 53, 377-380.	1.5	97
10	Protecting Healthcare Workers During the Coronavirus Disease 2019 (COVID-19) Outbreak: Lessons From Taiwan's Severe Acute Respiratory Syndrome Response. Clinical Infectious Diseases, 2020, 71, 858-860.	2.9	293
11	Suppressed humoral immunity is associated with dengue nonstructural protein NS1-elicited anti-death receptor antibody fractions in mice. Scientific Reports, 2020, 10, 6294.	1.6	14
12	Recommendations for protecting against and mitigating the COVID-19 pandemic in long-term care facilities. Journal of Microbiology, Immunology and Infection, 2020, 53, 447-453.	1.5	76
13	Comparing machine learning with case-control models to identify confirmed dengue cases. PLoS Neglected Tropical Diseases, 2020, 14, e0008843.	1.3	23
14	Comparing machine learning with case-control models to identify confirmed dengue cases. , 2020, 14, e0008843.		0
15	Comparing machine learning with case-control models to identify confirmed dengue cases. , 2020, 14, e0008843.		Ο
16	Comparing machine learning with case-control models to identify confirmed dengue cases. , 2020, 14, e0008843.		0
17	Comparing machine learning with case-control models to identify confirmed dengue cases. , 2020, 14, e0008843.		Ο
18	Comparing machine learning with case-control models to identify confirmed dengue cases. , 2020, 14,		0

e0008843.

#	Article	IF	CITATIONS
19	Comparing machine learning with case-control models to identify confirmed dengue cases. , 2020, 14, e0008843.		Ο
20	National retrospective cohort study to identify age-specific fatality risks of comorbidities among hospitalised patients with influenza-like illness in Taiwan. BMJ Open, 2019, 9, e025276.	0.8	8
21	Inter- and intra-host sequence diversity reveal the emergence of viral variants during an overwintering epidemic caused by dengue virus serotype 2 in southern Taiwan. PLoS Neglected Tropical Diseases, 2018, 12, e0006827.	1.3	19
22	Improving dengue viral antigens detection in dengue patient serum specimens using a low pH glycine buffer treatment. Journal of Microbiology, Immunology and Infection, 2017, 50, 167-174.	1.5	13
23	Virulence of Japanese Encephalitis Virus Genotypes I and III, Taiwan. Emerging Infectious Diseases, 2017, 23, 1883-1886.	2.0	10
24	Generation and Characterization of Antinonstructural Protein 1 Monoclonal Antibodies and Development of Diagnostics for Dengue Virus Serotype 2. American Journal of Tropical Medicine and Hygiene, 2017, 97, 1049-1061.	0.6	3
25	The Critical Role of Early Dengue Surveillance and Limitations of Clinical Reporting – Implications for Non-Endemic Countries. PLoS ONE, 2016, 11, e0160230.	1.1	13
26	Lessons from the Largest Epidemic of Avian Influenza Viruses in Taiwan, 2015. Avian Diseases, 2016, 60, 156-171.	0.4	8
27	Comparative Epidemiology of Human Infections with Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome Coronaviruses among Healthcare Personnel. PLoS ONE, 2016, 11, e0149988.	1.1	37
28	Phenotypic and Genetic Characterization of Avian Influenza H5N2 Viruses with Intra- and Inter-Duck Variations in Taiwan. PLoS ONE, 2015, 10, e0133910.	1.1	2
29	Behavioral changes in mosquito larvae induced by copepods predation. Hydrobiologia, 2015, 749, 113-123.	1.0	14
30	A case report of avian influenza H7N9 killing a young doctor in Shanghai, China. BMC Infectious Diseases, 2015, 15, 237.	1.3	12
31	Changing risk awareness and personal protection measures for low to high pathogenic avian influenza in live-poultry markets in Taiwan, 2007 to 2012. BMC Infectious Diseases, 2015, 15, 241.	1.3	6
32	Endothelial Cell Sensitization by Death Receptor Fractions of an Anti–Dengue Nonstructural Protein 1 Antibody Induced Plasma Leakage, Coagulopathy, and Mortality in Mice. Journal of Immunology, 2015, 195, 2743-2753.	0.4	32
33	Early Detection for Cases of Enterovirus- and Influenza-Like Illness through a Newly Established School-Based Syndromic Surveillance System in Taipei, January 2010 ~ August 2011. PLoS ONE, 2015, 10, e0122865.	1.1	8
34	Spatio-temporal analysis on enterovirus cases through integrated surveillance in Taiwan. BMC Public Health, 2014, 14, 11.	1.2	10
35	Emergence and Evolution of Avian H5N2 Influenza Viruses in Chickens in Taiwan. Journal of Virology, 2014, 88, 5677-5686.	1.5	66
36	Exploitation of stem-loop DNA as a dual-input gene sensing platform: extension to subtyping of influenza A viruses. Chemical Science, 2014, 5, 4082.	3.7	9

CHWAN-CHUEN KING

#	Article	IF	CITATIONS
37	Asymptomatic ratio for seasonal H1N1 influenza infection among schoolchildren in Taiwan. BMC Infectious Diseases, 2014, 14, 80.	1.3	33
38	Highly conserved influenza A virus epitope sequences as candidates of H3N2 flu vaccine targets. Genomics, 2012, 100, 102-109.	1.3	15
39	Field performance of clinical case definitions for influenza screening during the 2009 pandemic. American Journal of Emergency Medicine, 2012, 30, 1796-1803.	0.7	13
40	Emerged HA and NA Mutants of the Pandemic Influenza H1N1 Viruses with Increasing Epidemiological Significance in Taipei and Kaohsiung, Taiwan, 2009–10. PLoS ONE, 2012, 7, e31162.	1.1	32
41	Evaluation of an Adjustable Epidemiologic Information System. PLoS ONE, 2011, 6, e14596.	1.1	3
42	Managing Emerging Infectious Diseases with Information Systems: Reconceptualizing Outbreak Management Through the Lens of Loose Coupling. Information Systems Research, 2011, 22, 447-468.	2.2	27
43	Surveillance and Epidemiology of Infectious Diseases using Spatial and Temporal Lustering Methods. Integrated Series on Information Systems, 2011, , 207-234.	0.1	8
44	Estimating Pathogen-specific Asymptomatic Ratios. Epidemiology, 2010, 21, 726-728.	1.2	17
45	Probabilistic Daily ILI Syndromic Surveillance with a Spatio-Temporal Bayesian Hierarchical Model. PLoS ONE, 2010, 5, e11626.	1.1	20
46	The Role of Imported Cases and Favorable Meteorological Conditions in the Onset of Dengue Epidemics. PLoS Neglected Tropical Diseases, 2010, 4, e775.	1.3	86
47	Spatial–temporal patterns of dengue in areas at risk of dengue hemorrhagic fever in Kaohsiung, Taiwan, 2002. International Journal of Infectious Diseases, 2010, 14, e334-e343.	1.5	42
48	The Impact of Matching Vaccine Strains and Post-SARS Public Health Efforts on Reducing Influenza-Associated Mortality among the Elderly. PLoS ONE, 2010, 5, e11317.	1.1	8
49	Co-evolution positions and rules for antigenic variants of human influenza A/H3N2 viruses. BMC Bioinformatics, 2009, 10, S41.	1.2	38
50	Effects of the El Niño-Southern Oscillation on dengue epidemics in Thailand, 1996-2005. BMC Public Health, 2009, 9, 422.	1.2	77
51	Multilingual chief complaint classification for syndromic surveillance: An experiment with Chinese chief complaints. International Journal of Medical Informatics, 2009, 78, 308-320.	1.6	21
52	Quantification of Airborne Influenza and Avian Influenza Virus in a Wet Poultry Market using a Filter/Real-time qPCR Method. Aerosol Science and Technology, 2009, 43, 290-297.	1.5	41
53	Taipei's Use of a Multi-Channel Mass Risk Communication Program to Rapidly Reverse an Epidemic of Highly Communicable Disease. PLoS ONE, 2009, 4, e7962.	1.1	24
54	Incorporation of dengue virus replicon into virus-like particles by a cell line stably expressing precursor membrane and envelope proteins of dengue virus type 2. Journal of Biomedical Science, 2008, 15, 15-27.	2.6	12

CHWAN-CHUEN KING

#	Article	IF	CITATIONS
55	Increased mortality of male adults with AIDS related to poor compliance to antiretroviral therapy in Malawi. Tropical Medicine and International Health, 2008, 13, 513-519.	1.0	74
56	A strong endoplasmic reticulum retention signal in the stem–anchor region of envelope glycoprotein of dengue virus type 2 affects the production of virus-like particles. Virology, 2008, 374, 338-350.	1.1	37
57	Establishing a nationwide emergency department-based syndromic surveillance system for better public health responses in Taiwan. BMC Public Health, 2008, 8, 18.	1.2	73
58	Comparative analysis of full genomic sequences among different genotypes of dengue virus type 3. Virology Journal, 2008, 5, 63.	1.4	44
59	Antibodies to Envelope Glycoprotein of Dengue Virus during the Natural Course of Infection Are Predominantly Cross-Reactive and Recognize Epitopes Containing Highly Conserved Residues at the Fusion Loop of Domain II. Journal of Virology, 2008, 82, 6631-6643.	1.5	272
60	Higher Infection of Dengue Virus Serotype 2 in Human Monocytes of Patients with G6PD Deficiency. PLoS ONE, 2008, 3, e1557.	1.1	33
61	Two Clustering Diffusion Patterns Identified from the 2001–2003 Dengue Epidemic, Kaohsiung, Taiwan. American Journal of Tropical Medicine and Hygiene, 2008, 79, 344-352.	0.6	54
62	Two clustering diffusion patterns identified from the 2001-2003 dengue epidemic, Kaohsiung, Taiwan. American Journal of Tropical Medicine and Hygiene, 2008, 79, 344-52.	0.6	27
63	Generation and Characterization of Monoclonal Antibodies against Dengue Virus Type 1 for Epitope Mapping and Serological Detection by Epitope-Based Peptide Antigens. Vaccine Journal, 2007, 14, 404-411.	3.2	32
64	Challenges Faced by Hospital Healthcare Workers in Using a Syndrome-Based Surveillance System During the 2003 Outbreak of Severe Acute Respiratory Syndrome in Taiwan. Infection Control and Hospital Epidemiology, 2007, 28, 354-357.	1.0	9
65	Temperature Drops and the Onset of Severe Avian Influenza A H5N1 Virus Outbreaks. PLoS ONE, 2007, 2, e191.	1.1	49
66	Differences in replication capacity between enterovirus 71 isolates obtained from patients with encephalitis and those obtained from patients with herpangina in Taiwan. Journal of Medical Virology, 2007, 79, 60-68.	2.5	38
67	Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses. Virology, 2007, 368, 376-387.	1.1	26
68	Spatial mapping of temporal risk characteristics to improve environmental health risk identification: A case study of a dengue epidemic in Taiwan. Science of the Total Environment, 2006, 367, 631-640.	3.9	66
69	Slower Rates of Clearance of Viral Load and Virusâ€Containing Immune Complexes in Patients with Dengue Hemorrhagic Fever. Clinical Infectious Diseases, 2006, 43, 1023-1030.	2.9	147
70	Nasopharyngeal Shedding of Severe Acute Respiratory SyndromeAssociated Coronavirus Is Associated with Genetic Polymorphisms. Clinical Infectious Diseases, 2006, 42, 1561-1569.	2.9	56
71	Neutralizing Antibody Response and SARS Severity. Emerging Infectious Diseases, 2005, 11, 1730-1737.	2.0	127
72	Strategically examining the full-genome of dengue virus type 3 in clinical isolates reveals its mutation spectra. Virology Journal, 2005, 2, 72.	1.4	49

CHWAN-CHUEN KING

#	Article	IF	CITATIONS
73	1998 Dengue Hemorrhagic Fever Epidemic in Taiwan. Emerging Infectious Diseases, 2004, 10, 552-554.	2.0	35
74	Study of Sequence Variation of Dengue Type 3 Virus in Naturally Infected Mosquitoes and Human Hosts: Implications for Transmission and Evolution. Journal of Virology, 2004, 78, 12717-12721.	1.5	63
75	An External Loop Region of Domain III of Dengue Virus Type 2 Envelope Protein Is Involved in Serotype-Specific Binding to Mosquito but Not Mammalian Cells. Journal of Virology, 2004, 78, 378-388.	1.5	202
76	Lymphocyte activation and hepatic cellular infiltration in immunocompetent mice infected by dengue virus. Journal of Medical Virology, 2004, 73, 419-431.	2.5	58
77	High Levels of Plasma Dengue Viral Load during Defervescence in Patients with Dengue Hemorrhagic Fever: Implications for Pathogenesis. Virology, 2003, 305, 330-338.	1.1	159
78	Dengue Type 3 Virus in Plasma Is a Population of Closely Related Genomes: Quasispecies. Journal of Virology, 2002, 76, 4662-4665.	1.5	100
79	Detection of Dengue Virus Replication in Peripheral Blood Mononuclear Cells from Dengue Virus Type 2-Infected Patients by a Reverse Transcription-Real-Time PCR Assay. Journal of Clinical Microbiology, 2002, 40, 4472-4478.	1.8	86
80	Risk Factors of Enterovirus 71 Infection and Associated Hand, Foot, and Mouth Disease/Herpangina in Children During an Epidemic in Taiwan. Pediatrics, 2002, 109, e88-e88.	1.0	215
81	Sequence Diversity of the Capsid Gene and the Nonstructural Gene NS2B of Dengue-3 Virus in Vivo. Virology, 2002, 303, 181-191.	1.1	42
82	Intracellular localization and determination of a nuclear localization signal of the core protein of dengue virus. Journal of General Virology, 2002, 83, 3093-3102.	1.3	114
83	Genetic analysis of Asian measles virus strains – new endemic genotype in Nepal. Virus Research, 2001, 76, 71-78.	1.1	37
84	Development and Evaluation of Serotype- and Group-Specific Fluorogenic Reverse Transcriptase PCR (TaqMan) Assays for Dengue Virus. Journal of Clinical Microbiology, 2001, 39, 4119-4124.	1.8	177
85	Detection of Dengue Viral RNA Using a Nucleic Acid Sequence-Based Amplification Assay. Journal of Clinical Microbiology, 2001, 39, 2794-2798.	1.8	98
86	Flow Cytometry Compared with Indirect Immunofluorescence for Rapid Detection of Dengue Virus Type 1 after Amplification in Tissue Culture. Journal of Clinical Microbiology, 2001, 39, 3672-3677.	1.8	34
87	Quantitative Competitive Reverse Transcription-PCR for Quantification of Dengue Virus RNA. Journal of Clinical Microbiology, 2000, 38, 3306-3310.	1.8	39
88	Analysis of the Steps Involved in Dengue Virus Entry into Host Cells. Virology, 1999, 257, 156-167.	1.1	166
89	Bacterial Lipopolysaccharide Inhibits Dengue Virus Infection of Primary Human Monocytes/Macrophages by Blockade of Virus Entry via a CD14-Dependent Mechanism. Journal of Virology, 1999, 73, 2650-2657.	1.5	127
90	Study of Dengue Virus Infection in SCID Mice Engrafted with Human K562 Cells. Journal of Virology, 1998, 72, 9729-9737.	1.5	163

#	Article	IF	CITATIONS
91	High rate of hepatitis C virus infection in an isolated community: Persistent hyperendemicity or period-related phenomena?. , 1997, 52, 370-376.		36
92	Silent Transmission of the Dengue Virus in Southern Taiwan. American Journal of Tropical Medicine and Hygiene, 1996, 55, 12-16.	0.6	50
93	Homologous and heterologous neutralization antibody responses after immunization with Japanese encephalitis vaccine among Taiwan children. Journal of Medical Virology, 1994, 44, 122-131.	2.5	58
94	Seroepidemiology and Evaluation of Passive Surveillance during 1988–1989 Measles Outbreak in Taiwan. International Journal of Epidemiology, 1992, 21, 1165-1174.	0.9	26
95	Amplification of viral RNA for the detection of dengue types 1 and 2 virus. Journal of Infection, 1992, 24, 23-29.	1.7	8