Bettina Wingelhofer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/530428/publications.pdf

Version: 2024-02-01

686830 996533 17 614 13 15 citations h-index g-index papers 17 17 17 1302 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	STAT3 promotes melanoma metastasis by CEBP-induced repression of the MITF pathway. Oncogene, 2021, 40, 1091-1105.	2.6	42
2	High activation of STAT5A drives peripheral T-cell lymphoma and leukemia. Haematologica, 2020, 105, 435-447.	1.7	27
3	Pre-clinical activity of combined LSD1 and mTORC1 inhibition in MLL-translocated acute myeloid leukaemia. Leukemia, 2020, 34, 1266-1277.	3 . 3	24
4	STAT5 is Expressed in CD34+/CD38â^' Stem Cells and Serves as a Potential Molecular Target in Ph-Negative Myeloproliferative Neoplasms. Cancers, 2020, 12, 1021.	1.7	12
5	Emerging Epigenetic Therapeutic Targets in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 850.	1.3	15
6	The ERBB-STAT3 Axis Drives Tasmanian Devil Facial Tumor Disease. Cancer Cell, 2019, 35, 125-139.e9.	7.7	43
7	Cover Image, Volume 16, Issue 1. Veterinary and Comparative Oncology, 2018, 16, i.	0.8	0
8	Pharmacologic inhibition of STAT5 in acute myeloid leukemia. Leukemia, 2018, 32, 1135-1146.	3.3	112
9	Drug-induced inhibition of phosphorylation of STAT5 overrides drug resistance in neoplastic mast cells. Leukemia, 2018, 32, 1016-1022.	3.3	20
10	Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia, 2018, 32, 1713-1726.	3.3	166
11	The <scp>JAK2</scp> / <scp>STAT5</scp> signaling pathway as a potential therapeutic target in canine mastocytoma. Veterinary and Comparative Oncology, 2018, 16, 55-68.	0.8	19
12	Malignant Phenotypes in Metastatic Melanoma are Governed by SR-BI and its Association with Glycosylation and STAT5 Activation. Molecular Cancer Research, 2018, 16, 135-146.	1.5	21
13	Emerging therapeutic targets in myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas. Expert Opinion on Therapeutic Targets, 2018, 22, 45-57.	1.5	19
14	Genome-Wide CRISPR-Cas9 Screen Identifies Sensitizers to LSD1 Inhibition in MLL-Translocated Human AML Cells. Blood, 2018, 132, 178-178.	0.6	0
15	O-GlcNAcylation of STAT5 controls tyrosine phosphorylation and oncogenic transcription in STAT5-dependent malignancies. Leukemia, 2017, 31, 2132-2142.	3. 3	47
16	Preloading with L-BPA, L-tyrosine and L-DOPA enhances the uptake of [18F]FBPA in human and mouse tumour cell lines. Applied Radiation and Isotopes, 2016, 118, 67-72.	0.7	12
17	Fibroblast growth factor receptor 4: a putative key driver for the aggressive phenotype of hepatocellular carcinoma. Carcinogenesis, 2014, 35, 2331-2338.	1.3	35