Shao-Jun Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5303946/publications.pdf

Version: 2024-02-01

53 2,071 24 43 papers citations h-index g-index

58 58 58 2778
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Microglial ablation does not affect opioid-induced hyperalgesia in rodents. Pain, 2022, 163, 508-517.	4.2	12
2	A neuron-to-astrocyte Wnt5a signal governs astrogliosis during HIV-associated pain pathogenesis. Brain, 2022, 145, 4108-4123.	7.6	12
3	Aberrant Synaptic Pruning in CNS Diseases: A Critical Player in HIV-Associated Neurological Dysfunction?. Cells, 2022, 11, 1943.	4.1	3
4	Reactive astrocytes in pain neural circuit pathogenesis. Current Opinion in Neurobiology, 2022, 75, 102584.	4.2	10
5	Reactive Oxygen Species (ROS) are Critical for Morphine Exacerbation of HIV-1 gp120-Induced Pain. Journal of NeuroImmune Pharmacology, 2021, 16, 581-591.	4.1	21
6	HIV-Related Neuropathy: Pathophysiology, Treatment and Challenges. Journal of Neurology and Experimental Neuroscience, 2021, 7, 15-24.	0.1	2
7	Single-cell RNA-seq analysis reveals compartment-specific heterogeneity and plasticity of microglia. IScience, 2021, 24, 102186.	4.1	31
8	Mediators of Neuropathic Pain; Focus on Spinal Microglia, CSF-1, BDNF, CCL21, TNF- \hat{l}_{\pm} , Wnt Ligands, and Interleukin $1\hat{l}^2$. Frontiers in Pain Research, 2021, 2, 698157.	2.0	33
9	Microglia promote autoimmune inflammation via the noncanonical NF-κB pathway. Science Advances, 2021, 7, eabh0609.	10.3	19
10	$$ $$ $$ $$ $$ $$ $$ $$ $$	1.2	2
11	Neuron Type-Dependent Synaptic Activity in the Spinal Dorsal Horn of Opioid-Induced Hyperalgesia Mouse Model. Frontiers in Synaptic Neuroscience, 2021, 13, 748929.	2.5	1
12	Increased talin–vinculin spatial proximities in livers in response to spotted fever group rickettsial and Ebola virus infections. Laboratory Investigation, 2020, 100, 1030-1041.	3.7	8
13	Morphine and HIV-1 gp120 cooperatively promote pathogenesis in the spinal pain neural circuit. Molecular Pain, 2019, 15, 174480691986838.	2.1	25
14	Exchange protein directly activated by cAMP plays a critical role in regulation of vascular fibrinolysis. Life Sciences, 2019, 221, 1-12.	4.3	19
15	Microglia Mediate HIV-1 gp120-Induced Synaptic Degeneration in Spinal Pain Neural Circuits. Journal of Neuroscience, 2019, 39, 8408-8421.	3.6	38
16	Nucleoside Reverse Transcriptase Inhibitors (NRTIs) Induce Pathological Pain through Wnt5a-Mediated Neuroinflammation in Aging Mice. Journal of NeuroImmune Pharmacology, 2018, 13, 230-236.	4.1	35
17	Mitochondrial superoxide increases excitatory synaptic strength in spinal dorsal horn neurons of neuropathic mice. Molecular Pain, 2018, 14, 174480691879703.	2.1	26
18	Neuron activity–induced Wnt signaling up-regulates expression of brain-derived neurotrophic factor in the pain neural circuit. Journal of Biological Chemistry, 2018, 293, 15641-15651.	3.4	43

#	Article	IF	CITATIONS
19	Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. Journal of Clinical Investigation, 2018, 128, 4980-4991.	8.2	34
20	HIV-1 gp120 Upregulates Brain-Derived Neurotrophic Factor (BDNF) Expression in BV2 Cells via the Wnt/ \hat{l}^2 -Catenin Signaling Pathway. Journal of Molecular Neuroscience, 2017, 62, 199-208.	2.3	24
21	Nucleoside reverse transcriptase inhibitors (NRTIs) induce proinflammatory cytokines in the CNS via Wnt5a signaling. Scientific Reports, 2017, 7, 4117.	3.3	26
22	New Evidence for the Theory of Chromosome Organization by Repetitive Elements (CORE). Genes, 2017, 8, 81.	2.4	4
23	Potential Role of Phase Separation of Repetitive DNA in Chromosomal Organization. Genes, 2017, 8, 279.	2.4	20
24	HIV-associated synaptic degeneration. Molecular Brain, 2017, 10, 40.	2.6	52
25	The R-Operon: A Model of Repetitive DNA-Organized Transcriptional Compartmentation of Eukaryotic Chromosomes for Coordinated Gene Expression. Genes, 2016, 7, 16.	2.4	3
26	Maladaptive Plasticity and Neuropathic Pain. Neural Plasticity, 2016, 2016, 1-2.	2.2	23
27	Interactions of Opioids and HIV Infection in the Pathogenesis of Chronic Pain. Frontiers in Microbiology, 2016, 7, 103.	3.5	31
28	Oligodendrocytes in HIV-associated pain pathogenesis. Molecular Pain, 2016, 12, 174480691665684.	2.1	51
29	A repetitive DNA-directed program of chromosome packaging during mitosis. Journal of Genetics and Genomics, 2016, 43, 471-476.	3.9	2
30	HIV-1 gp120Bal down-Regulates Phosphorylated NMDA Receptor Subunit 1 in Cortical Neurons via Activation of Glutamate and Chemokine Receptors. Journal of NeuroImmune Pharmacology, 2016, 11, 182-191.	4.1	20
31	A Wnt5a signaling pathway in the pathogenesis of HIV-1 gp120-induced pain. Pain, 2015, 156, 1311-1319.	4.2	39
32	Editorial (Thematic Issue: W(e)nt to the Brain: Wnt Signaling in Neurological Disorders). CNS and Neurological Disorders - Drug Targets, 2014, 13, 736-736.	1.4	2
33	Gp120 in the pathogenesis of human immunodeficiency virus–associated pain. Annals of Neurology, 2014, 75, 837-850.	5.3	76
34	Synaptic Activity-Regulated Wnt Signaling in Synaptic Plasticity, Glial Function and Chronic Pain. CNS and Neurological Disorders - Drug Targets, 2014, 13, 737-744.	1.4	26
35	Wnt Signaling in the Pathogenesis of Human HIV-Associated Pain Syndromes. Journal of NeuroImmune Pharmacology, 2013, 8, 956-964.	4.1	34
36	Wingless-type Mammary Tumor Virus Integration Site Family, Member 5A (Wnt5a) Regulates Human Immunodeficiency Virus Type 1 (HIV-1) Envelope Glycoprotein 120 (gp120)-induced Expression of Pro-Inflammatory Cytokines via the Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) and c-Jun N-terminal Kinase (JNK) Signaling Pathways. Journal of Biological Chemistry, 2013, 288, 13610-13619.	3.4	52

#	Article	IF	CITATIONS
37	Chronic-Pain-Associated Astrocytic Reaction in the Spinal Cord Dorsal Horn of Human Immunodeficiency Virus-Infected Patients. Journal of Neuroscience, 2012, 32, 10833-10840.	3.6	152
38	Activation of NMDA Receptors Upregulates A Disintegrin and Metalloproteinase 10 via a Wnt/MAPK Signaling Pathway. Journal of Neuroscience, 2012, 32, 3910-3916.	3.6	59
39	Wnt Signaling in the Pathogenesis of Multiple Sclerosis-Associated Chronic Pain. Journal of NeuroImmune Pharmacology, 2012, 7, 904-913.	4.1	83
40	Regulation of Wnt Signaling by Nociceptive Input in Animal Models. Molecular Pain, 2012, 8, 1744-8069-8-47.	2.1	55
41	A Model of Repetitive-DNA-Organized Chromatin Network of Interphase Chromosomes. Genes, 2012, 3, 167-175.	2.4	8
42	A Role of the Mammalian Target of Rapamycin (mTOR) in Glutamate-Induced Down-regulation of Tuberous Sclerosis Complex Proteins 2 (TSC2). Journal of Molecular Neuroscience, 2012, 47, 340-345.	2.3	12
43	NMDA receptor activation stimulates transcription-independent rapid wnt5a protein synthesis via the MAPK signaling pathway. Molecular Brain, $2012, 5, 1$.	2.6	74
44	A Model of DNA Repeat-Assembled Mitotic Chromosomal Skeleton. Genes, 2011, 2, 661-670.	2.4	9
45	Chromatin Organization by Repetitive Elements (CORE): A Genomic Principle for the Higher-Order Structure of Chromosomes. Genes, 2011, 2, 502-515.	2.4	29
46	WNT5A Signaling Contributes to A \hat{l}^2 -Induced Neuroinflammation and Neurotoxicity. PLoS ONE, 2011, 6, e22920.	2.5	64
47	Aberrant expression of synaptic plasticityâ€related genes in the NF1 ^{+/â°'} mouse hippocampus. Journal of Neuroscience Research, 2009, 87, 3107-3119.	2.9	18
48	Regulation of microRNA Expression by Induction of Bidirectional Synaptic Plasticity. Journal of Molecular Neuroscience, 2009, 38, 50-56.	2.3	69
49	The synaptic Wnt signaling hypothesis. Synapse, 2007, 61, 866-868.	1.2	16
50	Mitogen-activated protein kinase signaling is essential for activity-dependent dendritic protein synthesis. NeuroReport, 2006, 17, 1575-1578.	1.2	18
51	Activity-dependent Synaptic Wnt Release Regulates Hippocampal Long Term Potentiation. Journal of Biological Chemistry, 2006, 281, 11910-11916.	3.4	264
52	Roles of Glutamate Receptors and the Mammalian Target of Rapamycin (mTOR) Signaling Pathway in Activity-dependent Dendritic Protein Synthesis in Hippocampal Neurons. Journal of Biological Chemistry, 2006, 281, 18802-18815.	3.4	214
53	Molecular Network and Chromosomal Clustering of Genes Involved in Synaptic Plasticity in the Hippocampus. Journal of Biological Chemistry, 2006, 281, 30195-30211.	3.4	64