
## Christopher S Francklyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5303397/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Neuropathyâ€associated histidylâ€ŧRNA synthetase variants attenuate protein synthesis in vitro and<br>disrupt axon outgrowth in developing zebrafish. FEBS Journal, 2021, 288, 142-159.                              | 4.7  | 13        |
| 2  | De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic<br>Gain-of-Function and Partial Loss-of-Function Effects. American Journal of Human Genetics, 2020, 107,<br>311-324. | 6.2  | 32        |
| 3  | Biâ€allelic mutations in HARS1 severely impair histidylâ€tRNA synthetase expression and enzymatic activity causing a novel multisystem ataxic syndrome. Human Mutation, 2020, 41, 1232-1237.                         | 2.5  | 15        |
| 4  | Immunity-Guided Identification of Threonyl-tRNA Synthetase as the Molecular Target of Obafluorin, a<br>β-Lactone Antibiotic. ACS Chemical Biology, 2019, 14, 2663-2671.                                              | 3.4  | 13        |
| 5  | Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. Journal of Biological Chemistry, 2019, 294, 5365-5385.                                                                                      | 3.4  | 103       |
| 6  | Peripheral neuropathy and cognitive impairment associated with a novel monoallelic<br><i><scp>HARS</scp></i> variant. Annals of Clinical and Translational Neurology, 2019, 6, 1072-1080.                            | 3.7  | 15        |
| 7  | Knock-Down of Histidyl-tRNA Synthetase Causes Cell Cycle Arrest and Apoptosis of Neuronal<br>Progenitor Cells in vivo. Frontiers in Cell and Developmental Biology, 2019, 7, 67.                                     | 3.7  | 14        |
| 8  | Biallelic VARS variants cause developmental encephalopathy with microcephaly that is recapitulated in vars knockout zebrafish. Nature Communications, 2019, 10, 708.                                                 | 12.8 | 40        |
| 9  | Substrate interaction defects in histidyl-tRNA synthetase linked to dominant axonal peripheral neuropathy. Human Mutation, 2018, 39, 415-432.                                                                        | 2.5  | 30        |
| 10 | The Usher Syndrome Type IIIB Histidyl-tRNA Synthetase Mutation Confers Temperature Sensitivity.<br>Biochemistry, 2017, 56, 3619-3631.                                                                                | 2.5  | 19        |
| 11 | Characterization of aminoacyl-tRNA synthetase stability and substrate interaction by differential scanning fluorimetry. Methods, 2017, 113, 64-71.                                                                   | 3.8  | 11        |
| 12 | A single Danio rerio hars gene encodes both cytoplasmic and mitochondrial histidyl-tRNA synthetases.<br>PLoS ONE, 2017, 12, e0185317.                                                                                | 2.5  | 10        |
| 13 | Aminoacyl-Transfer RNA Synthetases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 582-583.                                                                                                           | 2.4  | 4         |
| 14 | Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor.<br>Scientific Reports, 2015, 5, 13160.                                                                             | 3.3  | 26        |
| 15 | Structural basis for full-spectrum inhibition of translational functions on a tRNA synthetase. Nature Communications, 2015, 6, 6402.                                                                                 | 12.8 | 67        |
| 16 | Regulation of Angiogenesis by Aminoacyl-tRNA Synthetases. International Journal of Molecular<br>Sciences, 2014, 15, 23725-23748.                                                                                     | 4.1  | 33        |
| 17 | Transfer RNA and human disease. Frontiers in Genetics, 2014, 5, 158.                                                                                                                                                 | 2.3  | 169       |
| 18 | Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, F5508-17.                                 | 7.1  | 69        |

CHRISTOPHER S FRANCKLYN

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Standardizing Analysis of Circulating MicroRNA: Clinical and Biological Relevance. Journal of<br>Cellular Biochemistry, 2014, 115, 805-811.                                                                                                          | 2.6 | 90        |
| 20 | Secreted Threonyl-tRNA synthetase stimulates endothelial cell migration and angiogenesis. Scientific Reports, 2013, 3, 1317.                                                                                                                         | 3.3 | 73        |
| 21 | Aminoacylating Urzymes Challenge the RNA World Hypothesis. Journal of Biological Chemistry, 2013, 288, 26856-26863.                                                                                                                                  | 3.4 | 77        |
| 22 | Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases. PLoS<br>ONE, 2012, 7, e28936.                                                                                                                            | 2.5 | 254       |
| 23 | Altered nuclear cofactor switching in retinoicâ€resistant variants of the PMLâ€RARα oncoprotein of acute promyelocytic leukemia. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1095-1109.                                              | 2.6 | 6         |
| 24 | The α-Amino Group of the Threonine Substrate as The General Base During tRNA Aminoacylation: A New<br>Version of Substrate-Assisted Catalysis Predicted by Hybrid DFT. Journal of Physical Chemistry A, 2011,<br>115, 13050-13060.                   | 2.5 | 18        |
| 25 | Histidyl-tRNA Synthetase Urzymes. Journal of Biological Chemistry, 2011, 286, 10387-10395.                                                                                                                                                           | 3.4 | 55        |
| 26 | tRNA as an active chemical scaffold for diverse chemical transformations. FEBS Letters, 2010, 584, 366-375.                                                                                                                                          | 2.8 | 52        |
| 27 | Aminoacyl Transfer Rate Dictates Choice of Editing Pathway in Threonyl-tRNA Synthetase. Journal of<br>Biological Chemistry, 2010, 285, 23810-23817.                                                                                                  | 3.4 | 52        |
| 28 | Asymmetric Amino Acid Activation by Class II Histidyl-tRNA Synthetase from Escherichia coli. Journal of Biological Chemistry, 2009, 284, 20753-20762.                                                                                                | 3.4 | 20        |
| 29 | DNA Polymerases and Aminoacyl-tRNA Synthetases: Shared Mechanisms for Ensuring the Fidelity of Gene Expression. Biochemistry, 2008, 47, 11695-11703.                                                                                                 | 2.5 | 43        |
| 30 | Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases. Methods, 2008, 44, 100-118.                                                                                                                                            | 3.8 | 98        |
| 31 | RNA-assisted catalysis in a protein enzyme: The 2′-hydroxyl of tRNA <sup>Thr</sup> A76 promotes aminoacylation by threonyl-tRNA synthetase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17748-17753. | 7.1 | 45        |
| 32 | Kinetic Discrimination of tRNA Identity by the Conserved Motif 2 Loop of a Class II Aminoacyl-tRNA<br>Synthetase. Molecular Cell, 2007, 25, 531-542.                                                                                                 | 9.7 | 67        |
| 33 | Distinct Kinetic Mechanisms of the Two Classes of Aminoacyl-tRNA Synthetases. Journal of Molecular<br>Biology, 2006, 361, 300-311.                                                                                                                   | 4.2 | 100       |
| 34 | Evolutionary conservation of a functionally important backbone phosphate group critical for aminoacylation of histidine tRNAs. Rna, 2006, 12, 1315-1322.                                                                                             | 3.5 | 27        |
| 35 | Activation of the Hetero-octameric ATP Phosphoribosyl Transferase through Subunit Interface<br>Rearrangement by a tRNA Synthetase Paralog. Journal of Biological Chemistry, 2005, 280, 34096-34104.                                                  | 3.4 | 30        |
| 36 | A Unique Hydrophobic Cluster Near the Active Site Contributes to Differences in Borrelidin Inhibition among Threonyl-tRNA Synthetases. Journal of Biological Chemistry, 2005, 280, 571-577.                                                          | 3.4 | 49        |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Turning tRNA upside down: When aminoacylation is not a prerequisite to protein synthesis.<br>Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7493-7494.                                                       | 7.1  | 8         |
| 38 | tRNA synthetase paralogs: Evolutionary links in the transition from tRNA-dependent amino acid<br>biosynthesis to de novo biosynthesis. Proceedings of the National Academy of Sciences of the United<br>States of America, 2003, 100, 9650-9652.          | 7.1  | 34        |
| 39 | Aminoacyl-tRNA synthetases: Versatile players in the changing theater of translation. Rna, 2002, 8, 1363-1372.                                                                                                                                            | 3.5  | 74        |
| 40 | The tRNA-binding moiety in GCN2 contains a dimerization domain that interacts with the kinase domain and is required for tRNA binding and kinase activation. EMBO Journal, 2001, 20, 1425-1438.                                                           | 7.8  | 81        |
| 41 | Charging two for the price of one. , 2001, 8, 189-191.                                                                                                                                                                                                    |      | 3         |
| 42 | Aminoacylation at the Atomic Level in Class IIa Aminoacyl-tRNA Synthetases. Journal of Biomolecular<br>Structure and Dynamics, 2000, 17, 23-27.                                                                                                           | 3.5  | 3         |
| 43 | Proteobacterial Histidine-Biosynthetic Pathways Are Paraphyletic. Journal of Molecular Evolution, 2000, 50, 339-347.                                                                                                                                      | 1.8  | 27        |
| 44 | Transfer RNA–Mediated Editing in Threonyl-tRNA Synthetase. Cell, 2000, 103, 877-884.                                                                                                                                                                      | 28.9 | 175       |
| 45 | Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase. Nature Structural Biology, 2000, 7, 461-465.                                                                                                                                     | 9.7  | 139       |
| 46 | Mutational analysis of the engrailed homeodomain recognition helix by phage display. Nucleic Acids<br>Research, 1999, 27, 1182-1189.                                                                                                                      | 14.5 | 15        |
| 47 | tRNA Discrimination at the Binding Step by a Class II Aminoacyl-tRNA Synthetaseâ€. Biochemistry, 1999,<br>38, 13725-13735.                                                                                                                                | 2.5  | 35        |
| 48 | Catalytic defects in mutants of class II histidyl-tRNA synthetase from Salmonella typhimurium<br>previously linked to decreased control of histidine biosynthesis regulation 1 1Edited by D. Draper.<br>Journal of Molecular Biology, 1998, 280, 847-858. | 4.2  | 16        |
| 49 | A tRNA Identity Switch Mediated by the Binding Interaction between a tRNA Anticodon and the<br>Accessory Domain of a Class II Aminoacyl-tRNA Synthetaseâ€. Biochemistry, 1996, 35, 6559-6568.                                                             | 2.5  | 40        |
| 50 | Crystallization of Histidyl-tRNA Synthetase from Escherichia coli. Journal of Molecular Biology, 1994, 241, 275-277.                                                                                                                                      | 4.2  | 25        |
| 51 | Small RNA helices as substrates for aminoacylation and their relationship to charging of transfer RNAs. FEBS Journal, 1992, 206, 315-321.                                                                                                                 | 0.2  | 43        |
| 52 | Chemical synthesis of biologically active oligoribonucleotides using β-cyanoethyl protected ribonucleoside phosphoramidites. Nucleic Acids Research, 1990, 18, 5433-5441.                                                                                 | 14.5 | 313       |
| 53 | Synthetic RNA molecules as substrates for enzymes that act on tRNAs and tRNA-like molecules.<br>Chemical Reviews, 1990, 90, 1327-1342.                                                                                                                    | 47.7 | 14        |
| 54 | Aminoacylation of RNA minihelices with alanine. Nature, 1989, 337, 478-481.                                                                                                                                                                               | 27.8 | 328       |

| #  | Article                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Molecular dissection of a transfer RNA and the basis for its identity. Trends in Biochemical Sciences, 1989, 14, 233-237. | 7.5 | 27        |