

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5302914/publications.pdf Version: 2024-02-01

XIN CIL

#	Article	IF	CITATIONS
1	Constructing ultrastable electrode/electrolyte interface for rapid potassium ion storage capability via salt chemistry and interfacial engineering. Nano Research, 2022, 15, 2083-2091.	5.8	13
2	Boosting Fast and Stable Alkali Metal Ion Storage by Synergistic Engineering of Oxygen Vacancy and Amorphous Structure. Advanced Functional Materials, 2022, 32, 2106751.	7.8	38
3	High CO ₂ separation performance on a metal–organic framework composed of nano-cages lined with an ultra-high density of dual-side open metal sites. Materials Advances, 2022, 3, 493-497.	2.6	8
4	Adsorption in Reversed Order of C ₂ Hydrocarbons on an Ultramicroporous Fluorinated Metalâ€Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
5	Adsorption in Reversed Order of C ₂ Hydrocarbons on an Ultramicroporous Fluorinated Metalâ€Organic Framework. Angewandte Chemie, 2022, 134, .	1.6	7
6	Adsorption Site Selective Occupation Strategy within a Metal–Organic Framework for Highly Efficient Sieving Acetylene from Carbon Dioxide. Angewandte Chemie, 2021, 133, 4620-4624.	1.6	33
7	Adsorption Site Selective Occupation Strategy within a Metal–Organic Framework for Highly Efficient Sieving Acetylene from Carbon Dioxide. Angewandte Chemie - International Edition, 2021, 60, 4570-4574.	7.2	117
8	A CoSe–C@C core–shell structure with stable potassium storage performance realized by an effective solid electrolyte interphase layer. Journal of Materials Chemistry A, 2021, 9, 11397-11404.	5.2	28
9	Boosting fast and stable potassium storage of iron selenide/carbon nanocomposites by electrolyte salt and solvent chemistry. Journal of Power Sources, 2021, 486, 229373.	4.0	41
10	SiOx embedded in N-doped carbon nanoslices: A scalable synthesis of high-performance anode material for lithium-ion batteries. Carbon, 2021, 178, 202-210.	5.4	33
11	Carbon-coated NiSe nanoparticles anchored on reduced graphene oxide: a high-rate and long-life anode for potassium-ion batteries. Sustainable Energy and Fuels, 2021, 5, 3240-3246.	2.5	16
12	Graphitic carbon nitride catalyzes selective oxidative dehydrogenation of propane. Applied Catalysis B: Environmental, 2020, 262, 118277.	10.8	47
13	Sustained-Release Method for the Directed Synthesis of ZIF-Derived Ultrafine Co-N-C ORR Catalysts with Embedded Co Quantum Dots. ACS Applied Materials & Interfaces, 2020, 12, 57847-57858.	4.0	46
14	Spherical Superstructure of Boron Nitride Nanosheets Derived from Boron-Containing Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 8755-8762.	6.6	96
15	Stable Lithium Deposition Enabled by an Acid-Treated g-C ₃ N ₄ Interface Layer for a Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 11265-11272.	4.0	24
16	ZIF-Derived Cobalt-Containing N-Doped Carbon-Coated SiO _{<i>x</i>} Nanoparticles for Superior Lithium Storage. ACS Applied Materials & Interfaces, 2020, 12, 7206-7211.	4.0	43
17	Metal–organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1964-1988.	5.2	165
18	Superstructure of a Metal–Organic Framework Derived from Microdroplet Flow Reaction: An Intermediate State of Crystallization by Particle Attachment. ACS Nano, 2019, 13, 2901-2912.	7.3	47

Xin Gu

#	Article	IF	CITATIONS
19	One-step and scalable synthesis of Ni2P nanocrystals encapsulated in N,P-codoped hierarchically porous carbon matrix using a bipyridine and phosphonate linked nickel metal–organic framework as highly efficient electrocatalysts for overall water splitting. Electrochimica Acta, 2019, 297, 755-766.	2.6	44
20	Impact of moderative ligand hydrolysis on morphology evolution and the morphology-dependent breathing effect performance of MIL-53(Al). CrystEngComm, 2018, 20, 2102-2111.	1.3	9
21	Boosting ORR Catalytic Activity by Integrating Pyridineâ€N Dopants, a High Degree of Graphitization, and Hierarchical Pores into a MOFâ€Derived Nâ€Doped Carbon in a Tandem Synthesis. Chemistry - an Asian Journal, 2018, 13, 1318-1326.	1.7	24
22	Bottom-Up Fabrication of Ultrathin 2D Zr Metal–Organic Framework Nanosheets through a Facile Continuous Microdroplet Flow Reaction. Chemistry of Materials, 2018, 30, 3048-3059.	3.2	85
23	Nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 1682-1691.	5.2	168
24	Continuous synthesis for zirconium metal-organic frameworks with high quality and productivity via microdroplet flow reaction. Chinese Chemical Letters, 2018, 29, 849-853.	4.8	33
25	Titanosilicate Derived SiO ₂ /TiO ₂ @C Nanosheets with Highly Distributed TiO ₂ Nanoparticles in SiO ₂ Matrix as Robust Lithium Ion Battery Anode. ACS Applied Materials & Interfaces, 2018, 10, 44463-44471.	4.0	50
26	Paper-Derived Flexible 3D Interconnected Carbon Microfiber Networks with Controllable Pore Sizes for Supercapacitors. ACS Applied Materials & amp; Interfaces, 2018, 10, 37046-37056.	4.0	38
27	Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: promising anode materials for sodium and potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 17371-17377.	5.2	75
28	Synthesis of Mesoporous Î ³ -Al2O3 with Spongy Structure: In-Situ Conversion of Metal-Organic Frameworks and Improved Performance as Catalyst Support in Hydrodesulfurization. Materials, 2018, 11, 1067.	1.3	10
29	High oxygen reduction activity on a metal–organic framework derived carbon combined with high degree of graphitization and pyridinic-N dopants. Journal of Materials Chemistry A, 2017, 5, 789-795.	5.2	171
30	In Situ Synthesis Strategy for Hierarchically Porous Ni ₂ P Polyhedrons from MOFs Templates with Enhanced Electrochemical Properties for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 11642-11650.	4.0	158
31	Ultrafine TiO ₂ Nanoparticles Confined in Nâ€Doped Porous Carbon Networks as Anodes of Highâ€Performance Sodiumâ€lon Batteries. ChemElectroChem, 2017, 4, 1516-1522.	1.7	30
32	Missing-node directed synthesis of hierarchical pores on a zirconium metal–organic framework with tunable porosity and enhanced surface acidity via a microdroplet flow reaction. Journal of Materials Chemistry A, 2017, 5, 22372-22379.	5.2	159
33	Metalâ€Organic Frameworks Derived Nanotube of Nickel–Cobalt Bimetal Phosphides as Highly Efficient Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1703455.	7.8	597
34	Carbonates (bicarbonates)/reduced graphene oxide as anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 24645-24650.	5.2	21
35	Metal-organic Frameworks Derived CoS2-Co/N-doped Porous Carbon with Extremely High Electrocatalytic Stability for the Oxygen Reduction Reaction. International Journal of Electrochemical Science, 2016, 11, 9575-9584.	0.5	11
36	Increasing the CO ₂ /N ₂ Selectivity with a Higher Surface Density of Pyridinic Lewis Basic Sites in Porous Carbon Derived from a Pyridylâ€Ligandâ€Based Metal–Organic Framework. Chemistry - an Asian Journal, 2016, 11, 1913-1920.	1.7	24

Xin Gu

#	Article	IF	CITATIONS
37	Porous Carbon Polyhedrons with High-Level Nitrogen-Doping for High-Performance Sodium-Ion Battery Anodes. ChemistrySelect, 2016, 1, 6442-6447.	0.7	14
38	Hierarchical tubular structures constructed from rutile TiO2 nanorods with superior sodium storage properties. Electrochimica Acta, 2016, 211, 77-82.	2.6	29
39	Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 1037-1041.	5.2	192
40	General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) Hierarchical Microspheres as Lithium-ion Battery Anodes. Electrochimica Acta, 2015, 184, 250-256.	2.6	152
41	Coaxial Manganese Dioxide@N-doped Carbon Nanotubes as Superior Anodes for Lithium Ion Batteries. Electrochimica Acta, 2015, 182, 676-681.	2.6	37
42	Hierarchical core–shell α-Fe2O3@C nanotubes as a high-rate and long-life anode for advanced lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 3439-3444.	5.2	55
43	General synthesis of hollow MnO ₂ , Mn ₃ O ₄ and MnO nanospheres as superior anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 17421-17426.	5.2	213
44	Hierarchical vanadium pentoxide microflowers with excellent long-term cyclability at high rates for lithium ion batteries. Journal of Power Sources, 2014, 272, 991-996.	4.0	46
45	A general approach for MFe 2 O 4 (MÂ=ÂZn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries. Journal of Power Sources, 2014, 247, 163-169.	4.0	158
46	Controlled Growth of Porous αâ€Fe ₂ O ₃ Branches on βâ€MnO ₂ Nanorods for Excellent Performance in Lithiumâ€Ion Batteries. Advanced Functional Materials, 2013, 23, 4049-4056.	7.8	181
47	One-Dimensional CdS/α-Fe ₂ O ₃ and CdS/Fe ₃ O ₄ Heterostructures: Epitaxial and Nonepitaxial Growth and Photocatalytic Activity. Journal of Physical Chemistry C, 2009, 113, 14119-14125.	1.5	125