
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5302838/publications.pdf Version: 2024-02-01

FU-SHAN L

#	Article	IF	CITATIONS
1	Efficient quantum dot light-emitting diodes with ultra-homogeneous and highly ordered quantum dot monolayer. Science China Materials, 2022, 65, 757-763.	3.5	13
2	Fast-response, high-stability, and high-efficiency full-color quantum dot light-emitting diodes with charge storage layer. Science China Materials, 2022, 65, 1012-1019.	3.5	8
3	Operating Mechanism of Quantum-Dot Light-Emitting Diodes Under Alternating Current-Drive. IEEE Electron Device Letters, 2022, 43, 256-259.	2.2	4
4	Encapsulation of 2D MoS ₂ nanosheets into 1D carbon nanobelts as anodes with enhanced lithium/sodium storage properties. Journal of Materials Chemistry C, 2022, 10, 3329-3342.	2.7	25
5	Performance Enhancement of Quantum Dot Light-Emitting Diodes via Surface Modification of the Emitting Layer. ACS Applied Nano Materials, 2022, 5, 2962-2972.	2.4	8
6	Construction of Hierarchical SnO ₂ @NC@MoS ₂ /C Nanotubes for Ultrastable Lithium- and Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 3166-3179.	3.2	16
7	Ultrahigh-resolution quantum-dot light-emitting diodes. Nature Photonics, 2022, 16, 297-303.	15.6	97
8	Highly efficient inverted quantum dot light-emitting diodes employing sol-gel derived Li-doped ZnO as electron transport layer. Organic Electronics, 2022, 103, 106466.	1.4	12
9	Bio-inspired smart electronic-skin based on inorganic perovskite nanoplates for application in photomemories and mechanoreceptors. Nanoscale, 2021, 13, 253-260.	2.8	14
10	High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system. Nano Research, 2021, 14, 4125-4131.	5.8	42
11	Preparation of Polycrystallineâ€Mixed Graphene Film with Benzene Solution by Electromagnetic Induction for Application in Metal Corrosion Protection. Advanced Materials Interfaces, 2021, 8, 2001947.	1.9	1
12	Inkjet-Printed Quantum Dot Fluorescent Security Labels with Triple-Level Optical Encryption. ACS Applied Materials & Interfaces, 2021, 13, 15701-15708.	4.0	38
13	High-brightness perovskite quantum dot light-emitting devices using inkjet printing. Organic Electronics, 2021, 93, 106168.	1.4	20
14	Enhancing carrier injection efficiency of light-emitting electrochemical cells based on Cationic Ir(III) complexes by interface modification. Optical Materials, 2021, 117, 111127.	1.7	0
15	Light-Emitting Memristors for Optoelectronic Artificial Efferent Nerve. Nano Letters, 2021, 21, 6087-6094.	4.5	42
16	Solution-processed white light-emitting device with polymer/quantum-dot composite emission layers. Chemical Physics Letters, 2021, 776, 138668.	1.2	1
17	Quantum Dot Self-Assembly Deposition in Physically Confined Microscale Space by Using an Inkjet Printing Technique. Journal of Physical Chemistry Letters, 2021, 12, 8605-8613.	2.1	9
18	E-Synapse Based on Lead-Free Organic Halide Perovskite (CH3NH3)3Sb2Cl9 for Neuromorphic Computing. IEEE Transactions on Electron Devices, 2021, 68, 4425-4430.	1.6	4

#	Article	IF	CITATIONS
19	Intelligent, biomimetic, color-tunable, light-emitting artificial skin with memory function. Nano Energy, 2021, 90, 106569.	8.2	10
20	Mixed-Halide Perovskite Film-Based Neuromorphic Phototransistors for Mimicking Experience-History-Dependent Sensory Adaptation. ACS Applied Materials & Interfaces, 2021, 13, 47807-47816.	4.0	9
21	Unclonable Perovskite Fluorescent Dots with Fingerprint Pattern for Multilevel Anticounterfeiting. ACS Applied Materials & Interfaces, 2020, 12, 39649-39656.	4.0	55
22	Achieving Highly Efficient and Stable Quantum Dot Light-Emitting Diodes With Interface Modification. IEEE Electron Device Letters, 2020, 41, 1384-1387.	2.2	7
23	Ultrahighly Efficient White Quantum Dot Lightâ€Emitting Diodes Operating at Low Voltage. Advanced Optical Materials, 2020, 8, 2001479.	3.6	27
24	Facile and Efficient Patterning Method for Silver Nanowires and Its Application to Stretchable Electroluminescent Displays. ACS Applied Materials & Interfaces, 2020, 12, 24074-24085.	4.0	73
25	Highly efficient inkjet printed flexible organic light-emitting diodes with hybrid hole injection layer. Organic Electronics, 2020, 85, 105822.	1.4	29
26	Efficient inkjet-printed blue OLED with boosted charge transport using host doping for application in pixelated display. Optical Materials, 2020, 101, 109755.	1.7	28
27	Optoelectronic Perovskite Synapses for Neuromorphic Computing. Advanced Functional Materials, 2020, 30, 1908901.	7.8	142
28	Rational Design of Efficient Organometallic Ir(III) Complexes for High-Performance, Flexible, Monochromatic, and White Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 4649-4658.	4.0	27
29	Surface engineering towards highly efficient perovskite light-emitting diodes. Nano Energy, 2019, 65, 104029.	8.2	26
30	Highly Reliable Electronic Synapse Based on Au@Al ₂ O ₃ Core-Shell Nanoparticles for Neuromorphic Applications. IEEE Electron Device Letters, 2019, 40, 1610-1613.	2.2	7
31	Flexible Memristive Device Based on WSe ₂ Quantum Dots Sandwiched Between Two Poly (Methyl Methacrylate) Layers. IEEE Electron Device Letters, 2019, 40, 1088-1091.	2.2	9
32	Efficient Hole Injection of MoO _x -Doped Organic Layer for Printable Red Quantum Dot Light-Emitting Diodes. IEEE Electron Device Letters, 2019, 40, 1147-1150.	2.2	10
33	Self-assembly of coordination polymers on plasmonic surfaces for computer vision decodable, unclonable and colorful security labels. Journal of Materials Chemistry C, 2019, 7, 13040-13046.	2.7	49
34	Boosting the performance of quantum dot light-emitting diodes with Mg and PVP Co-doped ZnO as electron transport layer. Organic Electronics, 2019, 75, 105411.	1.4	14
35	Highly flexible memristive devices based on MoS ₂ quantum dots sandwiched between PMSSQ layers. Dalton Transactions, 2019, 48, 2422-2429.	1.6	18
36	Pâ€118: Efficient Quantum Dots Lightâ€Emitting Diodes with a thiocyanate hole injection layer. Digest of Technical Papers SID International Symposium, 2019, 50, 1693-1695.	0.1	0

#	Article	IF	CITATIONS
37	Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nature Communications, 2019, 10, 2409.	5.8	293
38	Ultrathin electronic synapse having high temporal/spatial uniformity and an Al2O3/graphene quantum dots/Al2O3 sandwich structure for neuromorphic computing. NPG Asia Materials, 2019, 11, .	3.8	42
39	Inkjet-printed pixelated light-emitting electrochemical cells based on cationic Ir(III) complexes. Organic Electronics, 2019, 69, 336-342.	1.4	13
40	All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer. Organic Electronics, 2019, 70, 279-285.	1.4	16
41	Improving device performance of n-type organic field-effect transistors <i>via</i> doping with a p-type organic semiconductor. Journal of Materials Chemistry C, 2019, 7, 4543-4550.	2.7	42
42	Highly flexible light emitting diodes based on a quantum dots-polymer composite emitting layer. Vacuum, 2019, 163, 282-286.	1.6	12
43	Fluorescent Microarrays of <i>in Situ</i> Crystallized Perovskite Nanocomposites Fabricated for Patterned Applications by Using Inkjet Printing. ACS Nano, 2019, 13, 2042-2049.	7.3	120
44	Dinuclear Ir(<scp>iii</scp>) complexes with asymmetrical bridging ligands as highly efficient phosphors for single-layer electroluminescent devices. Journal of Materials Chemistry C, 2019, 7, 13461-13467.	2.7	4
45	Aqueous solution-processed molybdenum oxide as an efficient hole injection layer for flexible quantum dot light emitting diodes. Thin Solid Films, 2019, 669, 387-391.	0.8	15
46	Improving Charge Injection via a Blade-Coating Molybdenum Oxide Layer: Toward High-Performance Large-Area Quantum-Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 8258-8264.	4.0	39
47	Inkjet-printed p-type nickel oxide thin-film transistor. Applied Surface Science, 2018, 441, 295-302.	3.1	56
48	Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers. Nano Energy, 2018, 49, 274-282.	8.2	46
49	Ultrasoft and cuttable paper-based triboelectric nanogenerators for mechanical energy harvesting. Nano Energy, 2018, 44, 279-287.	8.2	78
50	Emissions at Perovskite Quantum Dot/Film Interface with Halide Anion Exchange. ACS Photonics, 2018, 5, 4504-4512.	3.2	17
51	Blue quantum dot light emitting diodes with polyvinylpyrrolidone-doped electron transport layer. Organic Electronics, 2018, 63, 65-70.	1.4	28
52	All-Solution-Processed Perovskite Quantum Dots Light-Emitting Diodes Based on the Solvent Engineering Strategy. ACS Applied Materials & Interfaces, 2018, 10, 27374-27380.	4.0	40
53	Synthesis of red-emitting cationic Ir (III) complex and its application in white light-emitting electrochemical cells. Organic Electronics, 2017, 42, 303-308.	1.4	19
54	A facile synthesis of CH3NH3PbBr3 perovskite quantum dots and their application in flexible nonvolatile memory. Applied Physics Letters, 2017, 110, .	1.5	89

#	Article	IF	CITATIONS
55	Inkjet-Printed Photodetector Arrays Based on Hybrid Perovskite CH ₃ NH ₃ PbI ₃ Microwires. ACS Applied Materials & Interfaces, 2017, 9, 11662-11668.	4.0	81
56	Rational design and synthesis of cationic Ir(III) complexes with triazolate cyclometalated and ancillary ligands for multi-color tuning. Dyes and Pigments, 2017, 139, 524-532.	2.0	21
57	Mimicking Classical Conditioning Based on a Single Flexible Memristor. Advanced Materials, 2017, 29, 1602890.	11.1	119
58	Efficient All-Solution Processed Quantum Dot Light Emitting Diodes Based on Inkjet Printing Technique. ACS Applied Materials & Interfaces, 2017, 9, 25506-25512.	4.0	155
59	Importance of domain purity in semiâ€conducting polymer/insulating polymer blends transistors. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1760-1766.	2.4	20
60	Large Size Color-tunable Electroluminescence from Cationic Iridium Complexes-based Light-emitting Electrochemical Cells. Scientific Reports, 2016, 6, 27613.	1.6	16
61	Unique visible-light-assisted field emission of tetrapod-shaped ZnO/reduced graphene-oxide core/coating nanocomposites. Scientific Reports, 2016, 6, 38613.	1.6	31
62	Resistive switching memory based on organic/inorganic hybrid perovskite materials. Vacuum, 2016, 130, 109-112.	1.6	76
63	Tristable switching of the electrical conductivity through graphene quantum dots sandwiched in multi-stacked poly(methyl methacrylate) layers. Organic Electronics, 2016, 38, 379-383.	1.4	22
64	Aggregation-induced emission (AIE) active iridium complexes toward highly efficient single-layer non-doped electroluminescent devices. Journal of Materials Chemistry C, 2016, 4, 10464-10470.	2.7	27
65	Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core–Shell Nanocomposites. ACS Nano, 2016, 10, 6449-6457.	7.3	202
66	All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode. Nanotechnology, 2016, 27, 095202.	1.3	55
67	Flexible blue-green and white light-emitting electrochemical cells based on cationic iridium complex. Organic Electronics, 2016, 28, 314-318.	1.4	36
68	Carrier transport and memory mechanisms of multilevel resistive memory devices with an intermediate state based on double-stacked organic/inorganic nanocomposites. Organic Electronics, 2016, 28, 20-24.	1.4	53
69	Electrical Bistabilities and Conduction Mechanisms of Nonvolatile Memories Based on a Polymethylsilsesquioxane Insulating Layer Containing CdSe/ZnS Quantum Dots. Journal of Electronic Materials, 2015, 44, 3962-3966.	1.0	6
70	Transparent and flexible nonvolatile memory using poly(methylsilsesquioxane) dielectric embedded with cadmium selenide quantum dots. Japanese Journal of Applied Physics, 2014, 53, 125001.	0.8	8
71	Efficient tristable resistive memory based on single layer graphene/insulating polymer multi-stacking layer. Applied Physics Letters, 2014, 104, .	1.5	56
72	Formation and carrier transport properties of single-layer graphene/poly (methyl methacrylate) nanocomposite for resistiveÂmemory application. Vacuum, 2014, 101, 246-249.	1.6	6

#	Article	IF	CITATIONS
73	Formation and field emission of patterned zinc oxide-adhering graphene cathodes. Vacuum, 2013, 89, 57-61.	1.6	15
74	A surface-conducted field emission device with suspended graphene cathodes. Applied Surface Science, 2013, 273, 432-436.	3.1	9
75	Electrical and optical properties of flexible conductive carbon nanotube/Ag/Al-doped zinc oxide multilayer coatings. Thin Solid Films, 2012, 525, 93-96.	0.8	5
76	Improving efficiency of organic light-emitting diodes fabricated utilizing AZO/Ag/AZO multilayer electrode. Vacuum, 2012, 86, 1895-1897.	1.6	45
77	Electrical memory devices based on inorganic/organic nanocomposites. NPG Asia Materials, 2012, 4, e18-e18.	3.8	162
78	Improving the field emission of graphene by depositing zinc oxide nanorods on its surface. Carbon, 2012, 50, 3622-3626.	5.4	54
79	Highly reproducible memory effect of organic multilevel resistive-switch device utilizing graphene oxide sheets/polyimide hybrid nanocomposite. Applied Physics Letters, 2011, 99, 042108.	1.5	85
80	Field emission arrays fabricated utilizing conjugated ZnO quantum dot/carbon nanotube hybrid nanocomposite. Applied Surface Science, 2011, 257, 4539-4542.	3.1	13
81	Carrier Transport Mechanisms of the Writing and the Erasing Processes for Al/ZnO Nanoparticles Embedded in a Polymethyl Methacrylate Layer/C ₆₀ /p-Si Diodes. Journal of Nanoscience and Nanotechnology, 2010, 10, 4721-4724.	0.9	0
82	UV photovoltaic cells based on conjugated ZnO quantum dot/multiwalled carbon nanotube heterostructures. Applied Physics Letters, 2009, 94, .	1.5	47
83	Flexible photovoltaic cells fabricated utilizing ZnO quantum dot/carbon nanotube heterojunctions. Nanotechnology, 2009, 20, 155202.	1.3	23
84	Electrical bistabilities and operating mechanisms of memory devices fabricated utilizing ZnO quantum dot–multi-walled carbon nanotube nanocomposites. Nanotechnology, 2009, 20, 185202.	1.3	18
85	Photovoltaic cells fabricated utilizing core-shell CdSe/ZnSe quantum dot/multiwalled carbon nanotube heterostructures. Applied Physics Letters, 2009, 95, 061911.	1.5	20
86	Carrier transport mechanisms of bistable memory devices fabricated utilizing core–shell CdSe/ZnSe quantum-dot/multi-walled carbon nanotube hybrid nanocomposites. Nanotechnology, 2009, 20, 085202.	1.3	21
87	Multilevel nonvolatile memory effects in hybrid devices containing CdSeâ^•ZnS nanoparticle double arrays embedded in the C60 matrices. Applied Physics Letters, 2008, 92, 102110.	1.5	26
88	Nonvolatile electrical bistability and operating mechanism of memory devices based on CdSe/ZnS nanoparticle/polymer hybrid composites. Applied Physics Letters, 2008, 93, .	1.5	14
89	Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly <i>N</i> -vinylcarbazole polymer layer. Nanotechnology, 2008, 19, 055204.	1.3	85
90	Carrier transport mechanisms of nonvolatile memory devices based on nanocomposites consisting of ZnO nanoparticles with polymethylmethacrylate nanocomposites sandwiched between two C60 layers. Applied Physics Letters, 2008, 93, .	1.5	26

#	Article	IF	CITATIONS
91	Enhanced ultraviolet emission from ZnO nanocrystals embedded in a hybrid polymer composite layer. Journal of Applied Physics, 2008, 103, .	1.1	2
92	Memory effect of nonvolatile bistable devices based on CdSeâ^•ZnS nanoparticles sandwiched between C60 layers. Applied Physics Letters, 2007, 91, .	1.5	43
93	Organic bistable devices based on core/shell CdSeâ^•ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer. Applied Physics Letters, 2007, 91, 122111.	1.5	69
94	Memory effect of CdSeâ^•ZnS nanoparticles embedded in a conducting poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] polymer layer. Applied Physics Letters, 2007, 90, 222109.	1.5	53