
Hussain A Safar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5302772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OUP accepted manuscript. JAC-Antimicrobial Resistance, 2022, 4, dlac035.	0.9	0
2	Distribution of vitamin <scp>Dâ€binding</scp> protein/ <scp>groupâ€specific</scp> component gene subtypes in Kuwaiti population. Molecular Genetics & Genomic Medicine, 2022, , e1930.	0.6	1
3	Early secreted antigenic target of 6 kda-like proteins of mycobacterium tuberculosis: Diagnostic and vaccine relevance. International Journal of Mycobacteriology, 2022, 11, 10.	0.3	4
4	The Effect of Delivery Systems on the Induction of T Helper 1 Cell Response to an ESAT6-Like Protein Rv3619c and Identification of Its Immunodominant Peptides. Medical Principles and Practice, 2022, 31, 359-367.	1.1	3
5	Detection of mutations in NOD2/CARD15 gene in Arab patients with Crohn's disease. Saudi Journal of Gastroenterology, 2021, 27, 240.	0.5	5
6	Adjuvants and Antigen-Delivery Systems for Subunit Vaccines against Tuberculosis. Vaccines, 2021, 9, 972.	2.1	3
7	Current Status of HIV-1 Vaccines. Vaccines, 2021, 9, 1026.	2.1	17
8	Immunological Characterization of Proteins Expressed by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions Encoding the ESAT6-like Proteins. Vaccines, 2021, 9, 27.	2.1	12
9	Composition of nasal bacterial community and its seasonal variation in health care workers stationed in a clinical research laboratory. PLoS ONE, 2021, 16, e0260314.	1.1	12
10	Moraxella osloensis Bacteremia in an Immunocompetent Child. Journal of Pediatric Infectious Diseases, 2020, 15, 107-109.	0.1	2
11	An Overview of the Development of New Vaccines for Tuberculosis. Vaccines, 2020, 8, 586.	2.1	28
12	COVID-19 vaccine development: What lessons can we learn from TB?. Annals of Clinical Microbiology and Antimicrobials, 2020, 19, 56.	1.7	8
13	Mycobacterium tuberculosis–Specific Antigen Rv3619c Effectively Alleviates Allergic Asthma in Mice. Frontiers in Pharmacology, 2020, 11, 532199.	1.6	5
14	BCG as a Vector for Novel Recombinant Vaccines against Infectious Diseases and Cancers. Vaccines, 2020, 8, 736.	2.1	11
15	The effect of adjuvants and delivery systems on Th1, Th2, Th17 and Treg cytokine responses in mice immunized with Mycobacterium tuberculosis-specific proteins. PLoS ONE, 2020, 15, e0228381.	1.1	32
16	Vaccine Potential of Mycobacterial Antigens against Asthma. Medical Principles and Practice, 2020, 29, 404-411.	1.1	5
17	Title is missing!. , 2020, 15, e0228381.		0

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 15, e0228381.		0
20	Title is missing!. , 2020, 15, e0228381.		0
21	Title is missing!. , 2020, 15, e0228381.		0
22	Title is missing!. , 2020, 15, e0228381.		0
23	Draft Genome Sequences of Six Multidrug-Resistant Clinical Strains of Acinetobacter baumannii, Isolated at Two Major Hospitals in Kuwait. Genome Announcements, 2018, 6, .	0.8	5
24	Metagenomic analysis of viral diversity in respiratory samples from patients with respiratory tract infections in Kuwait. Journal of Medical Virology, 2018, 90, 412-420.	2.5	19
25	Development of a potent invigorator of immune responses endowed with both preventive and therapeutic properties. Biologics: Targets and Therapy, 2017, Volume 11, 55-63.	3.0	14
26	Species identification and molecular typing of human Brucella isolates from Kuwait. PLoS ONE, 2017, 12, e0182111.	1.1	22
27	Humoral immune responses in mice immunized with region of difference DNA vaccine constructs of pUMVC6 and pUMVC7. International Journal of Mycobacteriology, 2017, 6, 281.	0.3	6
28	Development of Escherichia coli and Mycobacterium smegmatis recombinants expressing major Mycobacterium tuberculosis-specific antigenic proteins. International Journal of Mycobacteriology, 2016, 5, S84-S85.	0.3	3
29	Draft Genome Sequences of Five Clinical Strains of Brucella melitensis Isolated from Patients Residing in Kuwait. Genome Announcements, 2016, 4, .	0.8	7
30	Constitutive and Antigenâ€Induced Secretion of Cytokines by Peripheral Blood Mononuclear Cells of Tuberculosis Patients. FASEB Journal, 2015, 29, 507.10.	0.2	0
31	Association between Helicobacter pylori genotypes and severity of chronic gastritis, peptic ulcer disease and gastric mucosal interleukin-8 levels: Evidence from a study in the Middle East. Gut Pathogens, 2014, 6, 41.	1.6	24
32	Characterization of a Cross-Reactive, Immunodominant and HLA-Promiscuous Epitope of Mycobacterium tuberculosis-Specific Major Antigenic Protein PPE68. PLoS ONE, 2014, 9, e103679.	1.1	24
33	Immune responses against Mycobacterium tuberculosis-specific proteins PE35 and CFP10 in mice immunized with recombinant Mycobacterium vaccae. Journal of King Abdulaziz University, Islamic Economics, 2014, 35, 350-9.	0.5	4
34	Cellular Immune Responses to Recombinant Mycobacterium bovis BCG Constructs Expressing Major Antigens of Region of Difference 1 of Mycobacterium tuberculosis. Vaccine Journal, 2013, 20, 1230-1237.	3.2	19
35	In silico Analysis and Experimental Validation of <i>Mycobacterium tuberculosis</i> -Specific Proteins and Peptides of <i>Mycobacterium tuberculosis</i> for Immunological Diagnosis and Vaccine Development. Medical Principles and Practice. 2013. 22. 43-51.	1.1	24
36	Diagnostic and Vaccine Potentials of ESAT-6 Family Proteins encoded by M. tuberculosis genomic regions absent in M. bovis BCG. Mycobacterial Diseases: Tuberculosis & Leprosy, 2013, 03, .	0.1	5

#	Article	IF	CITATIONS
37	Bioinformatics analysis of Mycobacterium tuberculosisâ€specific genomic regions to identify immunodominant proteins and peptides. FASEB Journal, 2013, 27, 52.2.	0.2	0
38	WhatÂ's New in the Development of Tuberculosis Vaccines. Medical Principles and Practice, 2012, 21, 195-196.	1.1	9
39	Comparative Analysis of Spontaneous and Mycobacterial Antigenâ€Induced Secretion of Th1, Th2 and Proâ€Inflammatory Cytokines by Peripheral Blood Mononuclear Cells of Tuberculosis Patients. Scandinavian Journal of Immunology, 2012, 75, 623-632.	1.3	24
40	Cellular Immune Responses in Mice Induced by <i>M.Âtuberculosis PE35</i> â€DNA Vaccine Construct. Scandinavian Journal of Immunology, 2011, 74, 554-560.	1.3	16
41	Cytokines in response to proteins predicted in genomic regions of difference of Mycobacterium tuberculosis. Microbiology and Immunology, 2011, 55, 267-278.	0.7	21
42	Comparative Evaluation of MPT83 (Rv2873) for T Helper-1 Cell Reactivity and Identification of HLA-Promiscuous Peptides in Mycobacterium bovis BCG-Vaccinated Healthy Subjects. Vaccine Journal, 2011, 18, 1752-1759.	3.2	17
43	Identification, Diagnostic Potential, and Natural Expression of Immunodominant Seroreactive Peptides Encoded by Five <i>Mycobacterium tuberculosis</i> -Specific Genomic Regions. Vaccine Journal, 2011, 18, 477-482.	3.2	26
44	Characterization of human cellular immune responses to <i>Mycobacterium tuberculosis</i> proteins encoded by genes predicted in RD15 genomic region that is absent in <i>Mycobacterium bovis</i> BCG. FEMS Immunology and Medical Microbiology, 2010, 59, 177-187.	2.7	13
45	Molecular Cloning, Expression, Purification and Immunological Characterization of Three Low-Molecular Weight Proteins Encoded by Genes in Genomic Regions of Difference of <i>Mycobacterium Tuberculosis</i> . Scandinavian Journal of Immunology, 2010, 71, 353-361.	1.3	22
46	DNA Vaccine Constructs Expressing Mycobacterium tuberculosis-Specific Genes Induce Immune Responses. Scandinavian Journal of Immunology, 2010, 72, 408-415.	1.3	27
47	Mapping of Th1-Cell Epitope Regions of <i>Mycobacterium tuberculosis</i> Protein MPT64 (Rv1980c) Using Synthetic Peptides and T-Cell Lines from <i>M. tuberculosis</i> -Infected Healthy Humans. Medical Principles and Practice, 2010, 19, 122-128.	1.1	17
48	In silico Binding Predictions for Identification of HLA-DR-Promiscuous Regions and Epitopes of <i>Mycobacterium tuberculosis</i> Protein MPT64 (Rv1980c) and Their Recognition by Human Th1 Cells. Medical Principles and Practice, 2010, 19, 367-372.	1.1	16
49	Species-specific antigenic Mycobacterium tuberculosis proteins tested by delayed-type hypersensitivity response. International Journal of Tuberculosis and Lung Disease, 2010, 14, 489-94.	0.6	11
50	HLA-Promiscuous Th1-Cell Reactivity of MPT64 (Rv1980c), a Major Secreted Antigen of <i>Mycobacterium tuberculosis</i> , in Healthy Subjects. Medical Principles and Practice, 2009, 18, 385-392.	1.1	22
51	Th1 Cell Reactivity and HLAâ€DR Binding Prediction for Promiscuous Recognition of MPT63 (Rv1926c), a Major Secreted Protein of <i>Mycobacterium tuberculosis</i> . Scandinavian Journal of Immunology, 2009, 69, 213-222.	1.3	35
52	Mycobacterial antigen-induced T helper type 1 (Th1) and Th2 reactivity of peripheral blood mononuclear cells from diabetic and non-diabetic tuberculosis patients and <i>Mycobacterium bovis</i> bacilli Calmette–Guérin (BCG)-vaccinated healthy subjects. Clinical and Experimental Immunology, 2009, 158, 64-73.	1.1	59
53	Vaccine potential ofMycobacterium tuberculosis-specific genomic regions:in vitrostudies in humans. Expert Review of Vaccines, 2009, 8, 1309-1312.	2.0	21
54	Identification of Mycobacterium tuberculosis-specific genomic regions encoding antigens inducing protective cellular immune responses. Indian Journal of Experimental Biology, 2009, 47, 498-504.	0.5	11

#	Article	IF	CITATIONS
55	Characterization of Human Cellular Immune Responses to Novel <i>Mycobacterium tuberculosis</i> Antigens Encoded by Genomic Regions Absent in <i>Mycobacterium bovis</i> BCG. Infection and Immunity, 2008, 76, 4190-4198.	1.0	50
56	Cell-Mediated Immune Responses to Complex and Single Mycobacterial Antigens in Tuberculosis Patients with Diabetes. Medical Principles and Practice, 2008, 17, 325-330.	1.1	14
57	Amplification of Six Putative RD1 Genes of <i>Mycobacterium tuberculosis</i> for Cloning and Expression in <i>Escherichia coli</i> and Purification of Expressed Proteins. Medical Principles and Practice, 2008, 17, 378-384.	1.1	9
58	Whole Blood Assays to Identify Th1 Cell Antigens and Peptides Encoded by <i>Mycobacterium tuberculosis</i> -Specific RD1 Genes. Medical Principles and Practice, 2008, 17, 244-249.	1.1	25
59	Efficient Testing of Large Pools of Mycobacterium tuberculosis RD1 Peptides and Identification of Major Antigens and Immunodominant Peptides Recognized by Human Th1 Cells. Vaccine Journal, 2008, 15, 916-924.	3.2	55
60	Internalization by HeLa cells of latex beads coated with mammalian cell entry (Mce) proteins encoded by the mce3 operon of Mycobacterium tuberculosis. Journal of Medical Microbiology, 2007, 56, 1145-1151.	0.7	52
61	Demonstration of In vivo Expression of a Hypothetical Open Reading Frame (ORF-14) Encoded by the RD1 Region of Mycobacterium tuberculosis. Scandinavian Journal of Immunology, 2007, 66, 422-425.	1.3	15
62	Cytokine profiles in tuberculosis patients and healthy subjects in response to complex and single antigens ofMycobacterium tuberculosis. FEMS Immunology and Medical Microbiology, 2006, 47, 254-261.	2.7	39
63	ProPred analysis and experimental evaluation of promiscuous T-cell epitopes of three major secreted antigens of Mycobacterium tuberculosis. Tuberculosis, 2006, 86, 115-124.	0.8	85
64	Immunogenicity of Mycobacterium tuberculosis Antigens in Mycobacterium bovis BCG-Vaccinated and M. bovis-Infected Cattle. Infection and Immunity, 2006, 74, 4566-4572.	1.0	40
65	Identification of Transcriptionally Active Open Reading Frames within the RD1 Genomic Segment of <i>Mycobacterium tuberculosis</i> . Medical Principles and Practice, 2006, 15, 137-144.	1.1	19
66	The six mammalian cell entry proteins (Mce3Aâ€F) encoded by the mce3 operon are expressed during in vitro growth of Mycobacterium tuberculosis. FASEB Journal, 2006, 20, LB67.	0.2	0
67	The Six Mammalian Cell Entry Proteins (Mce3A-F) Encoded by the mce3 Operon are Expressed During In Vitro Growth of Mycobacterium tuberculosis. Scandinavian Journal of Immunology, 2005, 62, 16-24.	1.3	40
68	Recombinant and synthetic peptides to identify Mycobacterium tuberculosis antigens and epitopes of diagnostic and vaccine relevance. Tuberculosis, 2005, 85, 367-376.	0.8	41
69	Large-scale evaluation of a single-tube nested PCR for the laboratory diagnosis of human brucellosis in Kuwait. Journal of Medical Microbiology, 2005, 54, 727-730.	0.7	25
70	Mycobacterial Gene Cloning and Expression, Comparative Genomics, Bioinformatics and Proteomics in Relation to the Development of New Vaccines and Diagnostic Reagents. Medical Principles and Practice, 2005, 14, 27-34.	1.1	31
71	HLA-DR Binding Prediction and Experimental Evaluation of T-Cell Epitopes of Mycolyl Transferase 85B (Ag85B), a Major Secreted Antigen of <i>Mycobacterium tuberculosis</i> . Medical Principles and Practice, 2005, 14, 140-146.	1.1	33
72	In vitro cellular immune responses to complex and newly defined recombinant antigens of Mycobacterium tuberculosis. Clinical and Experimental Immunology, 2004, 138, 139-144.	1.1	51

#	Article	IF	CITATIONS
73	Restoration of mycobacterial antigen-induced proliferation and interferon-γ responses in peripheral blood mononuclear cells of tuberculosis patients upon effective chemotherapy. FEMS Immunology and Medical Microbiology, 2003, 38, 249-256.	2.7	66
74	Human Th1 Cell Lines Recognize the Mycobacterium tuberculosis ESAT-6 Antigen and its Peptides in Association with Frequently Expressed HLA Class II Molecules. Scandinavian Journal of Immunology, 2003, 57, 125-134.	1.3	52
75	Construction of a modified vector for efficient purification of recombinant Mycobacterium tuberculosis proteins expressed in Escherichia coli. Protein Expression and Purification, 2003, 29, 167-175.	0.6	25
76	Single-tube, nested PCR for the diagnosis of human brucellosis in Kuwait. Annals of Tropical Medicine and Parasitology, 2002, 96, 397-403.	1.6	27
77	Development of new vaccines and diagnostic reagents against tuberculosis. Molecular Immunology, 2002, 39, 113-119.	1.0	92
78	Immunogenicity of Mycobacterium tuberculosis RD1 region gene products in infected cattle. Clinical and Experimental Immunology, 2002, 130, 37-42.	1.1	57
79	Detection of Y chromosome-specific DNA in the plasma and urine of pregnant women using nested polymerase chain reaction. Prenatal Diagnosis, 2001, 21, 399-402.	1.1	64
80	Elevated levels of interleukin-13 and IL-18 in patients with dengue hemorrhagic fever. FEMS Immunology and Medical Microbiology, 2001, 30, 229-233.	2.7	93
81	Biotechnology in the Development of New Vaccines and Diagnostic Reagents Against Tuberculosis. Current Pharmaceutical Biotechnology, 2001, 2, 157-173.	0.9	50
82	Cross-reactive epitopes and HLA-restriction elements in human T cell recognition of the Mycobacterium leprae 18-kD heat shock protein. Clinical and Experimental Immunology, 2000, 120, 85-92.	1.1	14
83	Identification and HLA Restriction of Naturally Derived Th1-Cell Epitopes from the Secreted Mycobacterium tuberculosis Antigen 85B Recognized by Antigen-Specific Human CD4 + T-Cell Lines. Infection and Immunity, 2000, 68, 3933-3940.	1.0	87
84	Multiple Epitopes from the Mycobacterium tuberculosis ESAT-6 Antigen Are Recognized by Antigen-Specific Human T Cell Lines. Clinical Infectious Diseases, 2000, 30, S201-S205.	2.9	91
85	Identification of a Novel Protein Antigen Encoded by a Mycobacterium tuberculosis-Specific RD1 Region Gene. Scandinavian Journal of Immunology, 1999, 49, 515-522.	1.3	47
86	Human T Cell Responses to the ESATâ€6 Antigen fromMycobacterium tuberculosis. Journal of Infectious Diseases, 1999, 179, 637-645.	1.9	299
87	M. leprae recombinant antigens important for T-cell reactivity. Indian Journal of Leprosy, 1999, 71, 75-86.	0.0	Ο
88	Detection of Mycobacterium tuberculosis complex and non-tuberculous mycobacteria by multiplex polymerase chain reactions. Eastern Mediterranean Health Journal, 1999, 5, 61-70.	0.3	10
89	Mycobacterial crossreactivity ofM. tuberculosisreactive T cell clones from naturally converted PPD positive healthy subjects. FEMS Immunology and Medical Microbiology, 1998, 20, 231-238.	2.7	11
90	Mycobacterium tuberculosisreactive T cell clones from naturally converted PPD-positive healthy subjects: recognition of theM. tuberculosis16-kDa antigen. FEMS Immunology and Medical Microbiology, 1998, 20, 319-325.	2.7	17

#	Article	IF	CITATIONS
91	Comparison of Antigen-Specific T-Cell Responses of Tuberculosis Patients using Complex or Single Antigens ofMycobacterium tuberculosis. Scandinavian Journal of Immunology, 1998, 48, 535-543.	1.3	114
92	HLAâ€DR4â€restricted Tâ€cell epitopes from the mycobacterial 60â€f000â€fMW heat shock protein (hspâ€f60 map to the sequence homology regions with the human hspâ€f60. Immunology, 1996, 87, 421-427.)) do not 2.0	21
93	Restoration of proliferative response to M. leprae antigens in lepromatous T cells against candidate antileprosy vaccines. International Journal of Leprosy and Other Mycobacterial Diseases, 1996, 64, 257-67.	0.3	5
94	Establishment and evaluation of a multiplex polymerase chain reaction for detection of mycobacteria and specific identification of Mycobacterium tuberculosis complex. Tubercle and Lung Disease, 1995, 76, 336-343.	2.1	26
95	Isolation and characterization of the genes of pathogenic mycobacteria that express antigens for T cell reactivity. Nutrition, 1995, 11, 653-6.	1.1	5
96	Identification of mycobacterial peptide epitopes recognized by CD4+ T cells in association with multiple major histocompatibility complex class II molecules. Nutrition, 1995, 11, 657-60.	1.1	2
97	Recognition of mycobacterial HSP65 in association with HLA-DR4 is not sufficient for autoreactivity. Nutrition, 1995, 11, 661-4.	1.1	2
98	Polymerase chain reaction targeting of single- and multiple-copy genes of mycobacteria in the diagnosis of tuberculosis. Nutrition, 1995, 11, 665-9.	1.1	6
99	Genetic transformation of mycobacteria by homologous recombination. Nutrition, 1995, 11, 670-3.	1.1	0
100	Mycobacterium bovis BCC-induced Th1 type CD4+ suppressor T cells act by suppressing IL-2 production and IL-2 receptor expression. Nutrition, 1995, 11, 692-4.	1.1	1
101	Cytokine production and cytotoxicity mediated by CD4+ T cells from healthy subjects vaccinated with Mycobacterium bovis BCG and from pulmonary tuberculosis patients. Nutrition, 1995, 11, 698-701.	1.1	3
102	An HLA-DRw53-restricted T-cell epitope from a novel Mycobacterium leprae protein antigen important to the human memory T-cell repertoire against M. leprae. Infection and Immunity, 1994, 62, 5595-5602.	1.0	22
103	Human T cells recognize mycobacterial heat shock proteins in the context of multiple HLA-DR molecules: studies with healthy subjects vaccinated with Mycobacterium bovis BCG and Mycobacterium leprae. Infection and Immunity, 1993, 61, 5294-5301.	1.0	71
104	Five cultivable mycobacterial strains giving blast transformation and leukocyte migration inhibition of leukocytes analogous to mycobacterium leprae. Leprosy in India, 1978, 50, 498-508.	0.1	7
105	Early and late reactions in tuberculoid and lepromatous leprosy patients with lepromins from Mycobacterium leprae and five selected cultivable mycobacteria. Leprosy in India, 1978, 50, 566-71.	0.1	6
106	Mycobacterial crossreactivity of M. tuberculosis reactive T cell clones from naturally converted PPD positive healthy subjects. , 0, .		1
107	Isolation of recombinant phage clones expressing mycobacterial T cell antigens by screening a recombinant DNA library with human CD4+ Th1 clones. , 0, .		2
108	Evaluation of PCR and Random Amplification of Polymorphic DNA for Detection and Typing of c is in Environmental Water Samples 0 - 254-256		1

Evaluation of PCR and Random Amplification of Polymorphic DNA <i>Legionella</i> in Environmental Water Samples. , 0, , 254-256. 108

7