Zorica Janjetovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/530270/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Steroidogenesis in the skin: Implications for local immune functions. Journal of Steroid Biochemistry and Molecular Biology, 2013, 137, 107-123.	1.2	305
2	<i>In vivo</i> evidence for a novel pathway of vitamin D ₃ metabolism initiated by P450scc and modified by CYP27B1. FASEB Journal, 2012, 26, 3901-3915.	0.2	250
3	RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20â€hydroxy―and 20,23â€dihydroxyvitamin D. FASEB Journal, 2014, 28, 2775-2789.	0.2	232
4	Products of Vitamin D3 or 7-Dehydrocholesterol Metabolism by Cytochrome P450scc Show Anti-Leukemia Effects, Having Low or Absent Calcemic Activity. PLoS ONE, 2010, 5, e9907.	1.1	135
5	Melatonin, mitochondria, and the skin. Cellular and Molecular Life Sciences, 2017, 74, 3913-3925.	2.4	131
6	Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Scientific Reports, 2017, 7, 1274.	1.6	124
7	Local Melatoninergic System as the Protector of Skin Integrity. International Journal of Molecular Sciences, 2014, 15, 17705-17732.	1.8	122
8	20-Hydroxycholecalciferol, Product of Vitamin D3 Hydroxylation by P450scc, Decreases NF-κB Activity by Increasing IκBα Levels in Human Keratinocytes. PLoS ONE, 2009, 4, e5988.	1.1	119
9	Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. FASEB Journal, 2013, 27, 2742-2755.	0.2	118
10	Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives. Cell Biochemistry and Biophysics, 2020, 78, 165-180.	0.9	113
11	20-Hydroxyvitamin D3, a Product of Vitamin D3 Hydroxylation by Cytochrome P450scc, Stimulates Keratinocyte Differentiation. Journal of Investigative Dermatology, 2008, 128, 2271-2280.	0.3	111
12	20-Hydroxyvitamin D ₂ is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells. American Journal of Physiology - Cell Physiology, 2011, 300, C526-C541.	2.1	108
13	Protective effects of novel derivatives of vitamin D3 and lumisterol against UVB-induced damage in human keratinocytes involve activation of Nrf2 and p53 defense mechanisms. Redox Biology, 2019, 24, 101206.	3.9	105
14	Differential and Overlapping Effects of 20,23(OH)2D3 and 1,25(OH)2D3 on Gene Expression in Human Epidermal Keratinocytes: Identification of AhR as an Alternative Receptor for 20,23(OH)2D3. International Journal of Molecular Sciences, 2018, 19, 3072.	1.8	98
15	20,23â€dihydroxyvitamin D3, novel P450scc product, stimulates differentiation and inhibits proliferation and NFâ€îºB activity in human keratinocytes. Journal of Cellular Physiology, 2010, 223, 36-48.	2.0	96
16	Melatonin and its metabolites ameliorate ultraviolet Bâ€induced damage in human epidermal keratinocytes. Journal of Pineal Research, 2014, 57, 90-102.	3.4	84
17	Production of 22-Hydroxy Metabolites of Vitamin D3 by Cytochrome P450scc (CYP11A1) and Analysis of Their Biological Activities on Skin Cells. Drug Metabolism and Disposition, 2011, 39, 1577-1588.	1.7	80
18	Melatonin and its derivatives counteract the ultraviolet B radiationâ€induced damage in human and porcine skin ex vivo. Journal of Pineal Research, 2018, 65, e12501.	3.4	77

ZORICA JANJETOVIC

#	Article	IF	CITATIONS
19	20 <i>S</i> -Hydroxyvitamin D ₃ , Noncalcemic Product of CYP11A1 Action on Vitamin D ₃ , Exhibits Potent Antifibrogenic Activity in Vivo. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E298-E303.	1.8	76
20	On the role of classical and novel forms of vitamin D in melanoma progression and management. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 159-170.	1.2	75
21	Novel non-calcemic secosteroids that are produced by human epidermal keratinocytes protect against solar radiation. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 52-63.	1.2	68
22	Correlation between secosteroid-induced vitamin D receptor activity in melanoma cells and computer-modeled receptor binding strength. Molecular and Cellular Endocrinology, 2012, 361, 143-152.	1.6	65
23	Characterization of a new pathway that activates lumisterol in vivo to biologically active hydroxylumisterols. Scientific Reports, 2017, 7, 11434.	1.6	64
24	Novel vitamin D hydroxyderivatives inhibit melanoma growth and show differential effects on normal melanocytes. Anticancer Research, 2012, 32, 3733-42.	0.5	63
25	Chemical synthesis of 20S-hydroxyvitamin D3, which shows antiproliferative activity. Steroids, 2010, 75, 926-935.	0.8	61
26	20-hydroxyvitamin Dâ, f inhibits proliferation of cancer cells with high efficacy while being non-toxic. Anticancer Research, 2012, 32, 739-46.	0.5	61
27	Vitamin D and lumisterol derivatives can act on liver X receptors (LXRs). Scientific Reports, 2021, 11, 8002.	1.6	60
28	Novel vitamin D photoproducts and their precursors in the skin. Dermato-Endocrinology, 2013, 5, 7-19.	1.9	56
29	Protective Role of Melatonin and Its Metabolites in Skin Aging. International Journal of Molecular Sciences, 2022, 23, 1238.	1.8	50
30	Rat CYP24A1 acts on 20-hydroxyvitamin D3 producing hydroxylated products with increased biological activity. Biochemical Pharmacology, 2012, 84, 1696-1704.	2.0	40
31	Hydroxylation of CYP11A1-Derived Products of Vitamin D3 Metabolism by Human and Mouse CYP27B1. Drug Metabolism and Disposition, 2013, 41, 1112-1124.	1.7	39
32	Antitumor Effects of Vitamin D Analogs on Hamster and Mouse Melanoma Cell Lines in Relation to Melanin Pigmentation. International Journal of Molecular Sciences, 2015, 16, 6645-6667.	1.8	39
33	Purified Mouse CYP27B1 Can Hydroxylate 20,23-Dihydroxyvitamin D ₃ , Producing 1α,20,23-Trihydroxyvitamin D ₃ , Which Has Altered Biological Activity. Drug Metabolism and Disposition, 2010, 38, 1553-1559.	1.7	38
34	Investigation of 20S-hydroxyvitamin D3 analogs and their 1α-OH derivatives as potent vitamin D receptor agonists with anti-inflammatory activities. Scientific Reports, 2018, 8, 1478.	1.6	38
35	The Role of Classical and Novel Forms of Vitamin D in the Pathogenesis and Progression of Nonmelanoma Skin Cancers. Advances in Experimental Medicine and Biology, 2020, 1268, 257-283.	0.8	38
36	CYP24A1 Expression Inversely Correlates with Melanoma Progression: Clinic-Pathological Studies. International Journal of Molecular Sciences, 2014, 15, 19000-19017.	1.8	35

ZORICA JANJETOVIC

#	Article	IF	CITATIONS
37	Characterization of serotonin and <i>N</i> â€acetylserotonin systems in the human epidermis and skin cells. Journal of Pineal Research, 2020, 68, e12626.	3.4	34
38	CYP11A1-derived vitamin D3 products protect against UVB-induced inflammation and promote keratinocytes differentiation. Free Radical Biology and Medicine, 2020, 155, 87-98.	1.3	31
39	Metabolic activation of tachysterol ₃ to biologically active hydroxyderivatives that act on <scp>VDR</scp> , <scp>AhR</scp> , <scp>LXRs,</scp> and <scp>PPARÎ³</scp> receptors. FASEB Journal, 2022, 36, .	0.2	29
40	1α,20S-Dihydroxyvitamin D3 Interacts with Vitamin D Receptor: Crystal Structure and Route of Chemical Synthesis. Scientific Reports, 2017, 7, 10193.	1.6	26
41	Hydroxylumisterols, Photoproducts of Pre-Vitamin D3, Protect Human Keratinocytes against UVB-Induced Damage. International Journal of Molecular Sciences, 2020, 21, 9374.	1.8	23
42	Molecular and structural basis of interactions of vitamin D3 hydroxyderivatives with aryl hydrocarbon receptor (AhR): An integrated experimental and computational study. International Journal of Biological Macromolecules, 2022, 209, 1111-1123.	3.6	17
43	Antifibrogenic Activities of CYP11A1-derived Vitamin D3-hydroxyderivatives Are Dependent on RORγ. Endocrinology, 2021, 162, .	1.4	16
44	CYP11A1‑derived vitamin D hydroxyderivatives as candidates for therapy of basal and squamous cell carcinomas. International Journal of Oncology, 2022, 61, .	1.4	16
45	Knocking out the Vitamin D Receptor Enhances Malignancy and Decreases Responsiveness to Vitamin D3 Hydroxyderivatives in Human Melanoma Cells. Cancers, 2021, 13, 3111.	1.7	14
46	Noncalcemic Vitamin D Hydroxyderivatives Inhibit Human Oral Squamous Cell Carcinoma and Down-regulate Hedgehog and WNT/β-Catenin Pathways. Anticancer Research, 2020, 40, 2467-2474.	0.5	12
47	Chemical synthesis, biological activities and action on nuclear receptors of 20S(OH)D3, 20S,25(OH)2D3, 20S,23S(OH)2D3 and 20S,23R(OH)2D3. Bioorganic Chemistry, 2022, 121, 105660.	2.0	10
48	17,20S(OH)2pD Can Prevent the Development of Skin Fibrosis in the Bleomycin-Induced Scleroderma Mouse Model. International Journal of Molecular Sciences, 2021, 22, 8926.	1.8	8
49	Design, Synthesis and Biological Activities of Novel Gemini 20S-Hydroxyvitamin D3 Analogs. Anticancer Research, 2016, 36, 877-86.	0.5	7
50	Modulation by 17,20S(OH)2pD of Fibrosis-Related Mediators in Dermal Fibroblast Lines from Healthy Donors and from Patients with Systemic Sclerosis. International Journal of Molecular Sciences, 2022, 23, 367.	1.8	7
51	Differential and Overlapping Effects of Melatonin and Its Metabolites on Keratinocyte Function: Bioinformatics and Metabolic Analyses. Antioxidants, 2021, 10, 618.	2.2	5