Erick Perera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/530222/publications.pdf

Version: 2024-02-01

40 951 19 30 papers citations h-index g-index

41 41 41 849 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Feed Supplementation with the GHRP-6 Peptide, a Ghrelin Analog, Improves Feed Intake, Growth Performance and Aerobic Metabolism in the Gilthead Sea Bream Sparus aurata. Fishes, 2022, 7, 31.	1.7	4
2	True lipase activity and in vitro digestibility of potential lipid sources for the spiny lobster Panulirus argus feeds. Aquaculture, 2022, 555, 738191.	3.5	2
3	Effects of genetics and early-life mild hypoxia on size variation in farmed gilthead sea bream (Sparus) Tj ETQq1 I	1 0.784314 2.3	, 4 rgBT /Over <mark>lo</mark> i
4	Physiological trade-offs associated with fasting weight loss, resistance to exercise and behavioral traits in farmed gilthead sea bream (Sparus aurata) selected by growth. Aquaculture Reports, 2021, 20, 100645.	1.7	9
5	Toward a More Comprehensive View of α-Amylase across Decapods Crustaceans. Biology, 2021, 10, 947.	2.8	3
6	Stearoyl-CoA desaturase ($scd1a$) is epigenetically regulated by broodstock nutrition in gilthead sea bream (Sparus aurata). Epigenetics, 2020, 15, 536-553.	2.7	26
7	Genetic selection for growth drives differences in intestinal microbiota composition and parasite disease resistance in gilthead sea bream. Microbiome, 2020, 8, 168.	11.1	48
8	Low dietary inclusion of nutraceuticals from microalgae improves feed efficiency and modifies intermediary metabolisms in gilthead sea bream (Sparus aurata). Scientific Reports, 2020, 10, 18676.	3.3	16
9	Local DNA methylation helps to regulate muscle sirtuin 1 gene expression across seasons and advancing age in gilthead sea bream (Sparus aurata). Frontiers in Zoology, 2020, 17, 15.	2.0	9
10	Evaluation of anticoagulants and hemocyte-maintaining solutions for the study of hemolymph components in the spiny lobster Panulirus argus (Latreille, 1804) (Decapoda: Achelata: Palinuridae). Journal of Crustacean Biology, 2020, 40, 213-217.	0.8	3
11	A Very Active α-Amylase and an Inhibitor-Based Control of Proteinases Are Key Features of Digestive Biochemistry of the Omnivorous Caribbean King Crab Maguimithrax spinosissimus. Journal of Evolutionary Biochemistry and Physiology, 2020, 56, 550-564.	0.6	3
12	Crustacean Proteases and Their Application in Debridement. Tropical Life Sciences Research, 2020, 31, 187-209.	0.9	4
13	Selection for growth is associated in gilthead sea bream (Sparus aurata) with diet flexibility, changes in growth patterns and higher intestine plasticity. Aquaculture, 2019, 507, 349-360.	3.5	27
14	Effects of Dietary Lipid Composition and Fatty Acid Desaturase 2 Expression in Broodstock Gilthead Sea Bream on Lipid Metabolism-Related Genes and Methylation of the fads2 Gene Promoter in Their Offspring. International Journal of Molecular Sciences, 2019, 20, 6250.	4.1	25
15	The clotting system in decapod crustaceans: History, current knowledge and what we need to know beyond the models. Fish and Shellfish Immunology, 2019, 84, 204-212.	3.6	26
16	Somatotropic Axis Regulation Unravels the Differential Effects of Nutritional and Environmental Factors in Growth Performance of Marine Farmed Fishes. Frontiers in Endocrinology, 2018, 9, 687.	3.5	56
17	Co-expression Analysis of Sirtuins and Related Metabolic Biomarkers in Juveniles of Gilthead Sea Bream (Sparus aurata) With Differences in Growth Performance. Frontiers in Physiology, 2018, 9, 608.	2.8	47
18	The circadian transcriptome of marine fish (Sparus aurata) larvae reveals highly synchronized biological processes at the whole organism level. Scientific Reports, 2017, 7, 12943.	3.3	54

#	Article	IF	Citations
19	Effects of soybean meal on digestive enzymes activity, expression of inflammation-related genes, and chromatin modifications in marine fish (Sparus aurata L.) larvae. Fish Physiology and Biochemistry, 2017, 43, 563-578.	2.3	31
20	Panusin represents a new family of \hat{l}^2 -defensin-like peptides in invertebrates. Developmental and Comparative Immunology, 2017, 67, 310-321.	2.3	21
21	Carbohydrates digestion and metabolism in the spiny lobster (<i>Panulirus argus</i>): biochemical indication for limited carbohydrate utilization. PeerJ, 2017, 5, e3975.	2.0	13
22	Soybean Meal and Soy Protein Concentrate in Early Diet Elicit Different Nutritional Programming Effects on Juvenile Zebrafish. Zebrafish, 2016, 13, 61-69.	1.1	47
23	Molecular, Biochemical, and Dietary Regulation Features of $\hat{l}\pm$ -Amylase in a Carnivorous Crustacean, the Spiny Lobster Panulirus argus. PLoS ONE, 2016, 11, e0158919.	2.5	15
24	Digestive physiology of spiny lobsters: implications for formulated diet development. Reviews in Aquaculture, 2015, 7, 243-261.	9.0	43
25	Trypsin isozymes in the lobster Panulirus argus (Latreille, 1804): from molecules to physiology. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2015, 185, 17-35.	1.5	18
26	A Holistic View of Dietary Carbohydrate Utilization in Lobster: Digestion, Postprandial Nutrient Flux, and Metabolism. PLoS ONE, 2014, 9, e108875.	2.5	14
27	The Trypsin Inhibitor Panulirin Regulates the Prophenoloxidase-activating System in the Spiny Lobster Panulirus argus. Journal of Biological Chemistry, 2013, 288, 31867-31879.	3.4	7
28	Dietary protein quality differentially regulates trypsin enzymes at the secretion and transcription level in <i>Panulirus argus</i> by distinct signaling pathways. Journal of Experimental Biology, 2012, 215, 853-862.	1.7	37
29	Lobster (<i>Panulirus argus</i>) Hepatopancreatic Trypsin Isoforms and Their Digestion Efficiency. Biological Bulletin, 2012, 222, 158-170.	1.8	14
30	Defensin like peptide from Panulirus argus relates structurally with beta defensin from vertebrates. Fish and Shellfish Immunology, 2012, 33, 872-879.	3.6	17
31	US-Cuba Scientific Collaboration: Emerging Issues and Opportunities in Marine and Related Environmental Sciences. Oceanography, 2012, 25, 227-231.	1.0	2
32	New members of the brachyurins family in lobster include a trypsinâ€like enzyme with amino acid substitutions in the substrateâ€binding pocket. FEBS Journal, 2010, 277, 3489-3501.	4.7	14
33	In vitro digestion of protein sources by crude enzyme extracts of the spiny lobster Panulirus argus (Latreille, 1804) hepatopancreas with different trypsin isoenzyme patterns. Aquaculture, 2010, 310, 178-185.	3.5	26
34	Hemocyanin-derived phenoloxidase activity in the spiny lobster Panulirus argus (Latreille, 1804). Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 652-658.	2.4	31
35	Polymorphism and partial characterization of digestive enzymes in the spiny lobster Panulirus argus. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2008, 150, 247-254.	1.6	49
36	Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2008, 151, 250-256.	1.6	60

#	Article	IF	CITATION
37	Effect of body weight, temperature and feeding on the metabolic rate in the spiny lobster Panulirus argus (Latreille, 1804). Aquaculture, 2007, 265, 261-270.	3.5	22
38	Phenoloxidase activity in the hemolymph of the spiny lobster Panulirus argus. Fish and Shellfish Immunology, 2007, 23, 1187-1195.	3.6	48
39	Large scale assessment of recruitment for the spiny lobster, Panulirus argus, aquaculture industry. Crustaceana, 2006, 79, 1071-1096.	0.3	12
40	Evaluation of practical diets for the Caribbean spiny lobster Panulirus argus (Latreille, 1804): effects of protein sources on substrate metabolism and digestive proteases. Aquaculture, 2005, 244, 251-262.	3.5	41