
Marcelo Hector Ratto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5302133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of follicle size on in vitro maturation in alpaca oocytes (Vicugna pacos) and the first ICSI in alpaca species. Small Ruminant Research, 2022, 213, 106680.	0.6	2
2	Oocyte Quality, In Vitro Fertilization and Embryo Development of Alpaca Oocytes Collected by Ultrasound-Guided Follicular Aspiration or from Slaughterhouse Ovaries. Animals, 2022, 12, 1102.	1.0	7
3	Neuroanatomical basis of the nerve growth factor ovulation–induction pathway in llamasâ€. Biology of Reproduction, 2021, 104, 578-588.	1.2	8
4	Multiple matings modify the estrous length, the moment of ovulation, and the estradiol and LH patterns in ewes. Animal Reproduction, 2021, 18, e20210045.	0.4	1
5	Differential Effects of Estradiol on Reproductive Function in Camelids. Frontiers in Veterinary Science, 2021, 8, 646700.	0.9	1
6	Effect of cat seminal plasma and purified llama ovulation-inducing factor (β-NGF) on ovarian function in queens. Theriogenology, 2021, 169, 29-35.	0.9	2
7	Heterologous beta-nerve growth factor (β-NGF) given at the LH surge enhances luteal function in dairy heifers. Domestic Animal Endocrinology, 2021, 77, 106645.	0.8	4
8	Effect of mating on mRNA and protein expression of beta nerve growth factor and its receptor, TrKA, in the oviduct of llama (<i>Lama glama</i>). Molecular Reproduction and Development, 2020, 87, 1133-1140.	1.0	3
9	Ovulation mechanism in South American Camelids: The active role of Î ² -NGF as the chemical signal eliciting ovulation in llamas and alpacas. Theriogenology, 2020, 150, 280-287.	0.9	17
10	Laterality of Ovulation and Presence of the Embryo Do Not Affect Uterine Horn Blood Flow During the First Month of Gestation in Llamas. Frontiers in Veterinary Science, 2020, 7, 598117.	0.9	3
11	β-NGF Stimulates Steroidogenic Enzyme and VEGFA Gene Expression, and Progesterone Secretion via ERK 1/2 Pathway in Primary Culture of Llama Granulosa Cells. Frontiers in Veterinary Science, 2020, 7, 586265.	0.9	9
12	Effects of NGF Addition on Llama (Lama glama) Sperm Traits After Cooling. Frontiers in Veterinary Science, 2020, 7, 610597.	0.9	5
13	New Insights Into the Role of β-NGF/TrKA System in the Endometrium of Alpacas During Early Pregnancy. Frontiers in Veterinary Science, 2020, 7, 583369.	0.9	1
14	Distribution of GnRH and Kisspeptin Immunoreactivity in the Female Llama Hypothalamus. Frontiers in Veterinary Science, 2020, 7, 597921.	0.9	2
15	The effect of seminal plasma β-NGF on follicular fluid hormone concentration and gene expression of steroidogenic enzymes in llama granulosa cells. Reproductive Biology and Endocrinology, 2019, 17, 60.	1.4	14
16	Evaluation of the effect of mating, intrauterine deposition of raw seminal plasma or seminal plasma plasma purified β-NGF on endometrial vascularization in llamas. Theriogenology, 2019, 125, 18-23.	0.9	11
17	New insights of the role of \hat{l}^2 -NGF in the ovulation mechanism of induced ovulating species. Reproduction, 2019, 157, R199-R207.	1.1	16
18	Source and localization of ovulation-inducing factor/nerve growth factor in male reproductive tissues among mammalian speciesâ€. Biology of Reproduction, 2018, 99, 1194-1204.	1.2	27

#	Article	IF	CITATIONS
19	Natural and controlled ovulation in South American camelids. Animal Reproduction, 2018, 15, 996-1002.	0.4	5
20	PRELIMINARY EVALUATION OF SEMINAL PLASMA PROTEINS AND IMMUNOREACTIVITY OF NERVE GROWTH FACTOR AS INDICATIVE OF AN OVULATION INDUCING FACTOR IN ODONTOCETES. , 2018, 2, 21-29.		0
21	Butyrate concentration before and after calving is not associated with the odds of subclinical mastitis in grazing dairy cows. Livestock Science, 2017, 198, 195-200.	0.6	5
22	A comparative study of the effects of intramuscular administration of gonadorelin, mating and intrauterine infusion of either raw seminal plasma or seminal plasma purified βâ€ <scp>NGF</scp> on luteal development in llamas. Reproduction in Domestic Animals, 2017, 52, 625-631.	0.6	6
23	Effect of oocyte maturation time, sperm selection method and oxygen tension on inÂvitro embryo development in alpacas. Theriogenology, 2017, 95, 127-132.	0.9	9
24	The association between subclinical mastitis around calving and reproductive performance in grazing dairy cows. Animal Reproduction Science, 2017, 185, 109-117.	0.5	3
25	Nerve growth factor from seminal plasma origin (spÎ ² -NGF) increases CL vascularization and level of mRNA expression of steroidogenic enzymes during the early stage of Corpus Luteum development in llamas. Theriogenology, 2017, 103, 69-75.	0.9	20
26	Tissue localization of GM-CSF receptor in bovine ovarian follicles and its role on glucose uptake by mural granulosa cells. Animal Reproduction Science, 2016, 170, 157-169.	0.5	7
27	Ovulationâ€inducing factor (<scp>OIF</scp> / <scp>NGF</scp>) in seminal plasma: a review and update. Reproduction in Domestic Animals, 2016, 51, 4-17.	0.6	52
28	Seminal Plasma Induces Ovulation in Llamas in the Absence of a Copulatory Stimulus: Role of Nerve Growth Factor as an Ovulation-Inducing Factor. Endocrinology, 2016, 157, 3224-3232.	1.4	44
29	LH release and ovulatory response after intramuscular, intravenous, and intrauterine administration of Î ² -nerve growth factor of seminal plasma origin in female llamas. Theriogenology, 2015, 84, 1096-1102.	0.9	23
30	In vitro developmental competence of alpaca (Vicugna pacos) and llama (Lama glama) oocytes after parthenogenetic activation. Small Ruminant Research, 2015, 133, 148-152.	0.6	2
31	Luteotrophic effect of ovulation-inducing factor/nerve growth factor present in the seminal plasma of llamas. Theriogenology, 2014, 81, 1101-1107.e1.	0.9	42
32	The effect of repeated administrations of llama ovulation-inducing factor (OIF/NGF) during the peri-ovulatory period on corpus luteum development and function in llamas. Animal Reproduction Science, 2014, 149, 345-352.	0.5	23
33	Ovulation-inducing factor (OIF/NGF) from seminal plasma origin enhances Corpus Luteum function in llamas regardless the preovulatory follicle diameter. Animal Reproduction Science, 2014, 148, 221-227.	0.5	26
34	Ovulation-inducing factor in seminal plasma: A review. Animal Reproduction Science, 2013, 136, 148-156.	0.5	63
35	Vitrification of in vitro mature alpaca oocyte: Effect of ethylene glycol concentration and time of exposure in the equilibration and vitrification solutions. Animal Reproduction Science, 2013, 143, 72-78.	0.5	8
36	Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances cumulus cell expansion in bovine oocytes. Reproductive Biology and Endocrinology, 2013, 11, 55.	1.4	12

#	Article	IF	CITATIONS
37	Induction of superovulation in South American camelids. Animal Reproduction Science, 2013, 136, 164-169.	0.5	12

³⁸ Effects of nutritional restriction on metabolic, endocrine, and ovarian function in llamas (Lama) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 70

39	Relationship between systemic leptin concentration and reproductive state in llamas (Lama glama) from southern Chile. Small Ruminant Research, 2013, 113, 402-404.	0.6	1
40	GnRH dose reduction decreases pituitary LH release and ovulatory response but does not affect corpus luteum (CL) development and function in llamas. Theriogenology, 2012, 77, 1802-1810.	0.9	12
41	Ovarian estradiol modulates the stimulatory effect of ovulation-inducing factor (OIF) on pituitary LH secretion in llamas. Theriogenology, 2012, 77, 1873-1882.	0.9	26
42	Effect of purified llama ovulation-inducing factor (OIF) on ovarian function in cattle. Theriogenology, 2012, 78, 1030-1039.	0.9	37
43	The nerve of ovulation-inducing factor in semen. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15042-15047.	3.3	130
44	Ovulation-inducing factor (OIF) induces LH secretion from pituitary cells. Animal Reproduction Science, 2012, 133, 117-122.	0.5	26
45	Effect of location and stage of development of dominant follicle on ovulation and embryo survival rate in alpacas. Animal Reproduction Science, 2011, 127, 100-105.	0.5	15
46	Is an ovulation-inducing factor (OIF) present in the seminal plasma of rabbits?. Animal Reproduction Science, 2011, 127, 213-221.	0.5	45
47	Transvaginal ultrasound-guided cumulus oocyte complexes aspiration and in vitro embryo production in suckled beef and lactating dairy cattle on pasture-based management conditions. Animal Reproduction Science, 2011, 129, 1-6.	0.5	14
48	In vitro fertilization and development of cumulus oocytes complexes collected by ultrasound-guided follocities follicle aspiration in superstimulated llamas. Theriogenology, 2011, 75, 1482-1488.	0.9	21
49	Biochemical isolation and purification of ovulation-inducing factor (OIF) in seminal plasma of llamas. Reproductive Biology and Endocrinology, 2011, 9, 24.	1.4	50
50	Cetrorelix suppresses the preovulatory LH surge and ovulation induced by ovulation-inducing factor (OIF) present in llama seminal plasma. Reproductive Biology and Endocrinology, 2011, 9, 74.	1.4	48
51	Dose-Response of Female Llamas to Ovulation-Inducing Factor from Seminal Plasma. Biology of Reproduction, 2011, 85, 452-456.	1.2	42
52	Ovulation-inducing factor: a protein component of llama seminal plasma. Reproductive Biology and Endocrinology, 2010, 8, 44.	1.4	37
53	Artificial insemination in South American camelids and wild equids. Theriogenology, 2009, 71, 166-175.	0.9	35
54	Ovarian response and embryo production in llamas treated with equine chorionic gonadotropin alone or with a progestin-releasing vaginal sponge at the time of follicular wave emergence. Theriogenology, 2009, 72, 803-808.	0.9	18

MARCELO HECTOR RATTO

#	Article	IF	CITATIONS
55	Sperm from Hyh Mice Carrying a Point Mutation in αSNAP Have a Defect in Acrosome Reaction. PLoS ONE, 2009, 4, e4963.	1.1	24
56	Effect of ovarian superstimulation on COC collection and maturation in alpacas. Animal Reproduction Science, 2007, 97, 246-256.	0.5	30
57	Embryo Technologies in South American Camelids. , 2007, , 900-905.		0
58	Comparison of the effect of natural mating, LH, and GnRH on interval to ovulation and luteal function in llamas. Animal Reproduction Science, 2006, 91, 299-306.	0.5	49
59	Comparison of the effect of ovulation-inducing factor (OIF) in the seminal plasma of llamas, alpacas, and bulls. Theriogenology, 2006, 66, 1102-1106.	0.9	60
60	Ovulation-Inducing Factor in the Seminal Plasma of Alpacas and Llamas1. Biology of Reproduction, 2005, 73, 452-457.	1.2	125
61	In vitro and in vivo maturation of llama oocytes. Theriogenology, 2005, 63, 2445-2457.	0.9	40
62	Local versus systemic effect of ovulation-inducing factor in the seminal plasma of alpacas. Reproductive Biology and Endocrinology, 2005, 3, 29.	1.4	58
63	Ovarian follicular wave synchronization and pregnancy rate after fixed-time natural mating in llamas. Theriogenology, 2003, 60, 1645-1656.	0.9	49
64	Superovulation in llamas (Lama glama) with pFSH and equine chorionic gonadotrophin used individually or in combination. Animal Reproduction Science, 1997, 46, 289-296.	0.5	30
65	Timing of mating and ovarian response in llamas (Lama glama) treated with pFSH. Animal Reproduction Science, 1997, 48, 325-330.	0.5	25