Silvia Salerno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5302009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pyrido[1,2- <i>a</i>]pyrimidin-4-one Derivatives as a Novel Class of Selective Aldose Reductase Inhibitors Exhibiting Antioxidant Activity. Journal of Medicinal Chemistry, 2007, 50, 4917-4927.	2.9	130
2	Anxiolytic-like Effects of <i>N</i> , <i>N</i> -Dialkyl-2-phenylindol-3-ylglyoxylamides by Modulation of Translocator Protein Promoting Neurosteroid Biosynthesis. Journal of Medicinal Chemistry, 2008, 51, 5798-5806.	2.9	80
3	Synthesis, in vitro antiproliferative activity and DNA-interaction of benzimidazoquinazoline derivatives as potential anti-tumor agents. Il Farmaco, 2001, 56, 159-167.	0.9	70
4	Synthesis, DNA binding and in vitro antiproliferative activity of purinoquinazoline, pyridopyrimidopurine and pyridopyrimidobenzimidazole derivatives as potential antitumor agents. European Journal of Medicinal Chemistry, 1998, 33, 685-696.	2.6	57
5	The Alpha Keto Amide Moiety as a Privileged Motif in Medicinal Chemistry: Current Insights and Emerging Opportunities. Journal of Medicinal Chemistry, 2021, 64, 3508-3545.	2.9	51
6	Novel <i>N</i> ² -Substituted Pyrazolo[3,4- <i>d</i>]pyrimidine Adenosine A ₃ Receptor Antagonists: Inhibition of A ₃ -Mediated Human Glioblastoma Cell Proliferation ^{â€} . Journal of Medicinal Chemistry, 2010, 53, 3954-3963.	2.9	50
7	Acetic Acid Aldose Reductase Inhibitors Bearing a Five-Membered Heterocyclic Core with Potent Topical Activity in a Visual Impairment Rat Model. Journal of Medicinal Chemistry, 2008, 51, 3182-3193.	2.9	47
8	Exploiting the Pyrazolo[3,4-d]pyrimidin-4-one Ring System as a Useful Template To Obtain Potent Adenosine Deaminase Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 1681-1692.	2.9	44
9	Phenylpyrazolo[1,5- <i>a</i>]quinazolin-5(4 <i>H</i>)-one: A Suitable Scaffold for the Development of Noncamptothecin Topoisomerase I (Top1) Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 7458-7462.	2.9	43
10	Arylsulfonamide inhibitors of aggrecanases as potential therapeutic agents for osteoarthritis: Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2013, 62, 379-394.	2.6	38
11	Tricyclic Sulfonamides Incorporating Benzothiopyrano[4,3-c]pyrazole and Pyridothiopyrano[4,3-c]pyrazole Effectively Inhibit α- and β-Carbonic Anhydrase: X-ray Crystallography and Solution Investigations on 15 Isoforms. Journal of Medicinal Chemistry, 2012, 55, 9619-9629.	2.9	35
12	Spirohydantoin derivatives of thiopyrano[2,3-b]pyridin-4(4H)-one as potent in vitro and in vivo aldose reductase inhibitors. Bioorganic and Medicinal Chemistry, 2005, 13, 491-499.	1.4	34
13	Deepening the Topology of the Translocator Protein Binding Site by Novel <i>N</i> , <i>N</i> -Dialkyl-2-arylindol-3-ylglyoxylamides. Journal of Medicinal Chemistry, 2015, 58, 6081-6092.	2.9	31
14	Multiple Topoisomerase I (TopoI), Topoisomerase II (TopoII) and Tyrosyl-DNA Phosphodiesterase (TDP) inhibitors in the development of anticancer drugs. European Journal of Pharmaceutical Sciences, 2021, 156, 105594.	1.9	31
15	An update into the medicinal chemistry of translocator protein (TSPO) ligands. European Journal of Medicinal Chemistry, 2021, 209, 112924.	2.6	31
16	Benzothiopyranoindole-Based Antiproliferative Agents: Synthesis, Cytotoxicity, Nucleic Acids Interaction, and Topoisomerases Inhibition Properties. Journal of Medicinal Chemistry, 2009, 52, 5429-5441.	2.9	30
17	3-Aryl-[1,2,4]triazino[4,3- <i>a</i>]benzimidazol-4(10 <i>H</i>)-one: A Novel Template for the Design of Highly Selective A _{2B} Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2012, 55, 1490-1499.	2.9	28
18	Identification of Anxiolytic/Nonsedative Agents among Indol-3-ylglyoxylamides Acting as Functionally Selective Agonists at the γ-Aminobutyric Acid-A (GABA _A) α ₂ Benzodiazepine Receptor. Journal of Medicinal Chemistry, 2009, 52, 3723-3734.	2.9	27

SILVIA SALERNO

#	Article	IF	CITATIONS
19	Novel Irreversible Fluorescent Probes Targeting the 18 kDa Translocator Protein: Synthesis and Biological Characterization. Journal of Medicinal Chemistry, 2010, 53, 4085-4093.	2.9	25
20	Benzofuroxane Derivatives as Multi-Effective Agents for the Treatment of Cardiovascular Diabetic Complications. Synthesis, Functional Evaluation, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2012, 55, 10523-10531.	2.9	24
21	5-Amino-2-phenyl[1,2,3]triazolo[1,2-a][1,2,4]benzotriazin-1-one:  A Versatile Scaffold To Obtain Potent and Selective A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2007, 50, 5676-5684.	2.9	22
22	Synthesis of novel 5 <i>H</i> , 11 <i>H</i> â€pyrido[2′,3′:2,3]thiopyrano[4,3â€ <i>b</i>]â€indoles by fischer cyclization. Journal of Heterocyclic Chemistry, 2000, 37, 379-382.	â€indole 1.4	21
23	1,2-Benzisothiazole Derivatives Bearing 4-, 5-, or 6-Alkyl/arylcarboxamide Moieties Inhibit Carbonic Anhydrase Isoform IX (CAIX) and Cell Proliferation under Hypoxic Conditions. Journal of Medicinal Chemistry, 2016, 59, 6547-6552.	2.9	20
24	Synthesis of novel pyrido[3′,2′:5,6]thiopyrano[3,2-b]indol-5(6H)-ones and 6H-pyrido[3′,2′:5,6]thiopyrano[4,3-b]quinolines, two new heterocyclic ring systems. Journal of Heterocyclic Chemistry, 2002, 39, 1001-1006.	1.4	19
25	Structure-Based Optimization of Tyrosine Kinase Inhibitor CLM3 . Design, Synthesis, Functional Evaluation, and Molecular Modeling Studies Journal of Medicinal Chemistry, 2014, 57, 1225-1235.	2.9	18
26	Sulfonamides incorporating heteropolycyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II, IX and XII. Bioorganic and Medicinal Chemistry, 2016, 24, 921-927.	1.4	18
27	4-Substituted Benzenesulfonamides Incorporating Bi/Tricyclic Moieties Act as Potent and Isoform-Selective Carbonic Anhydrase II/IX Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 5765-5770.	2.9	18
28	Investigation of new 2-aryl substituted Benzothiopyrano[4,3-d]pyrimidines as kinase inhibitors targeting vascular endothelial growth factor receptor 2. European Journal of Medicinal Chemistry, 2015, 103, 29-43.	2.6	17
29	Carbonic Anhydrase Activators for Neurodegeneration: An Overview. Molecules, 2022, 27, 2544.	1.7	17
30	Mitochondrial permeability transition induced by novel pyridothiopyranopyrimidine derivatives: Potential new antimitochondrial antitumour agents. Biochemical Pharmacology, 2006, 72, 1657-1667.	2.0	16
31	Targeting the KRAS oncogene: Synthesis, physicochemical and biological evaluation of novel G-Quadruplex DNA binders. European Journal of Pharmaceutical Sciences, 2020, 149, 105337.	1.9	15
32	Synthesis of novel 1,4-dihydropyrido[3′,2′:5,6]thiopyrano[4,3-c]-pyrazoles and 5H-pyrido[3′,2′:5,6]thiopyrano[4,3-d]pyrimidines as potential antiproliferative agents. Journal of Heterocyclic Chemistry, 2003, 40, 783-788.	1.4	14
33	Synthesis andin vitroantiproliferative activity of new substituted benzo[3′,2′:5,6]thiopyrano[4,3-d]pyrimidines. Journal of Heterocyclic Chemistry, 2008, 45, 745-749.	1.4	14
34	Novel positive allosteric modulators of A _{2B} adenosine receptor acting as bone mineralisation promoters. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 287-295.	2.5	12
35	High Affinity Central Benzodiazepine Receptor Ligands:Â Synthesis and Biological Evaluation of a Series of Phenyltriazolobenzotriazindione Derivatives. Journal of Medicinal Chemistry, 2005, 48, 2936-2943.	2.9	9
36	Inhibition studies on carbonic anhydrase isoforms I, II, IV and IX with N-arylsubstituted secondary sulfonamides featuring a bicyclic tetrahydroindazole scaffold. European Journal of Medicinal Chemistry, 2021, 220, 113490.	2.6	9

SILVIA SALERNO

#	Article	IF	CITATIONS
37	Synthesis of purinobenzodiazepine and purinobenzotriazocine derivatives, two new heterocyclic ring systems. Journal of Heterocyclic Chemistry, 1999, 36, 639-642.	1.4	8
38	Medicinal Chemistry of Indolylglyoxylamide GABAA/BzR High Affinity Ligands: Identification of Novel Anxiolytic/Non Sedative Agents. Current Topics in Medicinal Chemistry, 2012, 12, 286-311.	1.0	8
39	New insights in the structure-activity relationships of 2-phenylamino-substituted benzothiopyrano[4,3-d]pyrimidines as kinase inhibitors. European Journal of Medicinal Chemistry, 2018, 150, 446-456.	2.6	7
40	Medicinal Chemistry of Indolylglyoxylamide TSPO High Affinity Ligands with Anxiolytic-Like Effects. Current Topics in Medicinal Chemistry, 2012, 12, 333-351.	1.0	6
41	Novel fluorescent triazinobenzimidazole derivatives as probes for labelling human A1 and A2B adenosine receptor subtypes. Bioorganic and Medicinal Chemistry, 2018, 26, 5885-5895.	1.4	6
42	Facile synthesis of 3â€substituted [1,2,4]triazino[3,4â€ <i>f</i>]purineâ€4,6,8â€trione derivatives. Journal of Heterocyclic Chemistry, 2001, 38, 607-612.	1.4	5
43	Benzothiopyranoindole- and pyridothiopyranoindole-based antiproliferative agents targeting topoisomerases. European Journal of Medicinal Chemistry, 2019, 165, 46-58.	2.6	5
44	Tetrahydroquinazole-based secondary sulphonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IV, and IX, and computational studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1874-1883.	2.5	4
45	Discovery of Pyrido[3′,2′:5,6]thiopyrano[4,3- <i>d</i>]pyrimidine-Based Antiproliferative Multikinase Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 457-462.	1.3	3
46	Carbonic anhydrase activation profile of indole-based derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1783-1797.	2.5	3
47	Cancer Immunotherapy: An Overview on Small Molecules as Inhibitors of the Immune Checkpoint PD-1/PD-L1 (2015-2021). Mini-Reviews in Medicinal Chemistry, 2022, 22, .	1.1	3
48	Enriching the Arsenal of Pharmacological Tools against MICAL2. Molecules, 2021, 26, 7519.	1.7	1
49	Drug Repurposing Meets DNA Independent Pathways: Targeting Alternative Substrates for Anticancer Therapy. Current Topics in Medicinal Chemistry, 2021, 21, 2767-2770.	1.0	0