
Barbara Simoncic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5301729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Raw to Finished Cotton—Characterization by Interface Phenomena. Autex Research Journal, 2023, 23, 184-192.	0.6	1
2	Plasma-assisted fabrication of hydrophobic siloxane based sol–gel-coated coir fibres. Surface Innovations, 2022, 10, 128-139.	1.4	3
3	Sustainable and cost-effective functionalization of textile surfaces with Ag-doped TiO2/polysiloxane hybrid nanocomposite for UV protection, antibacterial and self-cleaning properties. Applied Surface Science, 2022, 595, 153521.	3.1	19
4	Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 2021, 22, 100890.	1.5	64
5	New Insights into Antibacterial and Antifungal Properties, Cytotoxicity and Aquatic Ecotoxicity of Flame Retardant PA6/DOPO-Derivative Nanocomposite Textile Fibers. Polymers, 2021, 13, 905.	2.0	5
6	Graphitic Carbon Nitride as a New Sustainable Photocatalyst for Textile Functionalization. Polymers, 2021, 13, 2568.	2.0	9
7	Multifunctional antibacterial and ultraviolet protective cotton cellulose developed by in situ biosynthesis of silver nanoparticles into a polysiloxane matrix mediated by sumac leaf extract. Applied Surface Science, 2021, 563, 150361.	3.1	25
8	New sustainable flame retardant DOPO-NH-functionalized polyamide 6 and filament yarn. Chemical Engineering Journal, 2021, 426, 130760.	6.6	30
9	Characterization of Polyamide 6/Multilayer Graphene Nanoplatelet Composite Textile Filaments Obtained Via In Situ Polymerization and Melt Spinning. Polymers, 2020, 12, 1787.	2.0	9
10	The influence of coating with aminopropyl triethoxysilane and CuO/Cu 2 O nanoparticles on antimicrobial activity of cotton fabrics under dark conditions. Journal of Applied Polymer Science, 2020, 137, 49194.	1.3	18
11	Tailoring of Antibacterial and UV-protective Cotton Fabric by an in situ Synthesis of Silver Particles in the Presence of a Sol-gel Matrix and Sumac Leaf Extract. Tekstilec, 2020, 63, 4-13.	0.3	12
12	Antibacterial Activity and Biodegradation of Cellulose Fiber Blends with Incorporated ZnO. Materials, 2019, 12, 3399.	1.3	29
13	Zinc Oxide for Functional Textile Coatings: Recent Advances. Coatings, 2019, 9, 550.	1.2	121
14	Smart Stimuli-Responsive Polylactic Acid-Hydrogel Fibers Produced via Electrospinning. Fibers and Polymers, 2019, 20, 1857-1868.	1.1	11
15	In situ prepared polyamide 6/DOPO-derivative nanocomposite for melt-spinning of flame retardant textile filaments. Polymer Degradation and Stability, 2019, 166, 50-59.	2.7	39
16	Proactive Release of Antimicrobial Essential Oil from a "Smart―Cotton Fabric. Coatings, 2019, 9, 242.	1.2	5
17	Polyamide 6 composite fibers with incorporated mixtures of melamine cyanurate, carbon nanotubes, and carbon black. Journal of Applied Polymer Science, 2019, 136, 47007.	1.3	12
18	Multifunctional Hydrophobic, Oleophobic and Flame-retardant Polyester Fabric. Tekstilec, 2019, 62, 12-22.	0.3	5

#	Article	IF	CITATIONS
19	Cationic Pretreatment of Cotton and Dyeing with Fallopia Japonica Leaves. Tekstilec, 2019, 62, 181-186.	0.3	7
20	Biodegradation of cotton fabric impregnated with TiO2 nanoparticles. Journal of the Serbian Chemical Society, 2019, 84, 743-755.	0.4	5
21	Influence of non-thermal plasma treatement on the adsorption of a stimuli-responsive nanogel onto polyethylene terephthalate fabric. Progress in Organic Coatings, 2018, 120, 198-207.	1.9	9
22	Comparison of responsive behaviour of smart PLA fabrics applied with temperature and pH responsive microgel and nanogel. Progress in Organic Coatings, 2018, 124, 213-223.	1.9	6
23	Influence of N-, P- and Si-based Flame Retardant Mixtures on Flammability, Thermal Behavior and Mechanical Properties of PA6 Composite Fibers. Fibers and Polymers, 2018, 19, 1194-1206.	1.1	11
24	Influence of the structure of a bio-barrier forming agent on the stimuli-response and antimicrobial activity of a "smart―non-cytotoxic cotton fabric. Cellulose, 2018, 25, 6231-6245.	2.4	5
25	Recent Advances in Production of Flame Retardant Polyamide 6 Filament Yarns. Tekstilec, 2018, 61, 136-148.	0.3	9
26	Recent advances in the ultraviolet protection finishing of textiles. Tekstilec, 2018, 61, 201-220.	0.3	36
27	Preparation of Functional Stimuli-responsive Polyamide 6 Fabric with ZnO Incorporated Microgel. Tekstilec, 2018, 61, 14-26.	0.3	1
28	Structural optimisation of a multifunctional water- and oil-repellent, antibacterial, and flame-retardant sol–gel coating on cellulose fibres. Cellulose, 2017, 24, 1511-1528.	2.4	22
29	Light distribution in air-supported pneumatic structures: Comparison of experimental and computer calculated daylight factors. Building and Environment, 2017, 119, 110-127.	3.0	5
30	Combining polyNiPAAm/chitosan microgel and bio-barrier polysiloxane matrix to create smart cotton fabric with responsive moisture management and antibacterial properties: influence of the application process. Journal of Sol-Gel Science and Technology, 2017, 83, 19-34.	1.1	12
31	Embedment of silver into temperature- and pH-responsive microgel for the development of smart textiles with simultaneous moisture management and controlled antimicrobial activities. Carbohydrate Polymers, 2017, 159, 161-170.	5.1	31
32	The influence of corona treatment and impregnation with colloidal TiO2 nanoparticles on biodegradability of cotton fabric. Cellulose, 2017, 24, 4533-4545.	2.4	8
33	Tailoring of temperature- and pH-responsive cotton fabric with antimicrobial activity: Effect of the concentration of a bio-barrier-forming agent. Carbohydrate Polymers, 2017, 174, 677-687.	5.1	6
34	Influence of crosslinker structure on performance of functionalised organic-inorganic hybrid sol-gel coating. IOP Conference Series: Materials Science and Engineering, 2017, 254, 122013.	0.3	1
35	Influence of the nanotechnological process of chemical modification on the antimicrobial activity and biodegradability of textile fibres. Tekstilec, 2017, 60, 14-24.	0.3	5
36	Organofunctional Trialkoxysilane Sol-Gel Precursors for Chemical Modification of Textile Fibres. Tekstilec, 2017, 60, 198-213.	0.3	7

#	Article	IF	CITATIONS
37	Stimuli-responsive Hydrogels for Textile Functionalisation: A Review. Tekstilec, 2017, 60, 76-96.	0.3	12
38	Influence of oxygen plasma pre-treatment on the water repellency of cotton fibers coated with perfluoroalkyl-functionalized polysilsesquioxane. Fibers and Polymers, 2016, 17, 695-704.	1.1	17
39	Fabrication of the hierarchically roughened bumpy-surface topography for the long-lasting highly oleophobic "lotus effect―on cotton fibres. Cellulose, 2016, 23, 3301-3318.	2.4	14
40	Balloon theory of yarn during unwinding from packages. Textile Reseach Journal, 2016, 86, 1522-1532.	1.1	9
41	Synergistic inhibitory action of P- and Si-containing precursors in sol–gel coatings on the thermal degradation of polyamide 6. Polymer Degradation and Stability, 2016, 128, 245-252.	2.7	39
42	Preparation and performance of silver as an antimicrobial agent for textiles: A review. Textile Reseach Journal, 2016, 86, 210-223.	1.1	92
43	Application of Stimuli Responsive Microgel for Creation of Smart Cotton Fabric with Antibacterial Properties. Tekstilec, 2016, 59, 142-148.	0.3	2
44	Influence of Flame Retardant Additive on Thermal Behaviour and Stability of Fibre-Forming Polyamide 6. Tekstilec, 2016, 59, 149-155.	0.3	4
45	Flame Retardants and Environmental Issues. Tekstilec, 2016, 59, 196-205.	0.3	5
46	Tailoring of a Dual-active Antibacterial Coating for Polylactic Acid Fibres. Tekstilec, 2016, 59, 289-297.	0.3	3
47	Preparation of Multifunctional Repellent and Antimicrobial Active Polyamide 6 Fabric Pretreated with Oxygen Plasma. Tekstilec, 2016, 59, 15-27.	0.3	1
48	Bacteriostatic photocatalytic properties of cotton modified with TiO2 and TiO2/aminopropyltriethoxysilane. Cellulose, 2015, 22, 3441-3463.	2.4	20
49	Functionalization of cellulose fibres with DOPO-polysilsesquioxane flame retardant nanocoating. Cellulose, 2015, 22, 1893-1910.	2.4	112
50	Cotton fiber hot spot in situ growth of Stöber particles. Cellulose, 2015, 22, 3597-3607.	2.4	10
51	The Influence of a Surfactant's Structure and the Mode of its Action During Reactive Wool Dyeing. Tekstilec, 2015, 58, 301-313.	0.3	7
52	Preparation of novel fibre–silica–Ag composites: the influence of fibre structure on sorption capacity and antimicrobial activity. Journal of Materials Science, 2014, 49, 3785-3794.	1.7	16
53	Multifunctional superhydrophobic/oleophobic and flame-retardant cellulose fibres with improved ice-releasing properties and passive antibacterial activity prepared via the sol–gel method. Journal of Sol-Gel Science and Technology, 2014, 70, 385-399.	1.1	33
54	Novel multifunctional water- and oil-repellent, antibacterial, and flame-retardant cellulose fibres created by the sol–gel process. Cellulose, 2014, 21, 2611-2623.	2.4	43

#	Article	IF	CITATIONS
55	Tailoring of multifunctional cellulose fibres with "lotus effect―and flame retardant properties. Cellulose, 2014, 21, 595-605.	2.4	14
56	Characterisation and functional properties of antimicrobial bio-barriers formed by natural fibres. Colloids and Surfaces B: Biointerfaces, 2014, 122, 72-78.	2.5	13
57	Influence of Preparation Procedure of Colloidal Silver Solution on Properties of Fibres from Polylactic Acid. Tekstilec, 2014, 56, 302-311.	0.3	2
58	Visual and Functional Properties of Digital Printed and Finished Anaglyph Pictures on Cotton Fabric. Tekstilec, 2014, 57, 32-42.	0.3	0
59	Influence of Finishing and Water on Functioning of Passive UHF RFID Tags on Diff erent Fabrics. Tekstilec, 2014, 57, 153-163.	0.3	1
60	Infl uence of Antimicrobial Finishing on Colour and Colour Fastness of Textiles from Natural Fibres. Tekstilec, 2014, 57, 283-299.	0.3	0
61	Creating Superhydrophobic and Oleophobic Cotton Fabric Dyed with Reactive Dyes. Tekstilec, 2014, 57, 273-282.	0.3	0
62	Study of flame-retardant finishing of cellulose fibres: Organic–inorganic hybrid versus conventional organophosphonate. Polymer Degradation and Stability, 2013, 98, 2602-2608.	2.7	53
63	Antimicrobial wool, polyester and a wool/polyester blend created by silver particles embedded in a silica matrix. Colloids and Surfaces B: Biointerfaces, 2013, 111, 517-522.	2.5	28
64	The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose, 2013, 20, 277-289.	2.4	91
65	Determination of Optimal Concentrations of Agents for Preparation of Multifunctional Water and Oil Repellent and Flame Retardant Finish. Tekstilec, 2013, 56, 13-21.	0.3	2
66	Antimicrobial cotton fibres prepared by in situ synthesis of AgCl into a silica matrix. Cellulose, 2012, 19, 1715-1729.	2.4	35
67	Functionalization of cotton with poly-NiPAAm/chitosan microgel: Part II. Stimuli-responsive liquid management properties. Cellulose, 2012, 19, 273-287.	2.4	28
68	Multifunctional water and oil repellent and antimicrobial properties of finished cotton: influence of sol–gel finishing procedure. Journal of Sol-Gel Science and Technology, 2012, 61, 340-354.	1.1	56
69	Sol–gel technology for functional finishing of PES fabric by stimuli-responsive microgel. Journal of Sol-Gel Science and Technology, 2012, 61, 463-476.	1.1	12
70	Using a Digital Camera to Identify Colors in Urban Environments. Journal of Imaging Science and Technology, 2011, 55, 60201-1-60201-4.	0.3	4
71	Influence of antimicrobial finishes on the biodeterioration of cotton and cotton/polyester fabrics: Leaching versus bio-barrier formation. Polymer Degradation and Stability, 2011, 96, 1286-1296.	2.7	41
72	Biodegradation of silver functionalised cellulose fibres. Carbohydrate Polymers, 2010, 80, 426-435.	5.1	60

#	Article	IF	CITATIONS
73	Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydrate Polymers, 2009, 75, 618-626.	5.1	134
74	Structural Properties and Antibacterial Effects of Hydrophobic and Oleophobic Solâ^'Gel Coatings for Cotton Fabrics. Langmuir, 2009, 25, 5869-5880.	1.6	180
75	Surface properties of cellulose modified by imidazolidinone. Cellulose, 2008, 15, 47-58.	2.4	15
76	Sol–gel coating of cellulose fibres with antimicrobial and repellent properties. Journal of Sol-Gel Science and Technology, 2008, 47, 44-57.	1.1	151
77	The influence of repellent coatings on surface free energy of glass plate and cotton fabric. Applied Surface Science, 2008, 254, 6467-6477.	3.1	41
78	Influence of the chemical structure of dyes and surfactants on their interactions in binary and ternary mixture. Dyes and Pigments, 2008, 76, 104-112.	2.0	21
79	The influence of nonionic surfactant structure on the thermodynamics of anionic dye–cationic surfactant interactions in ternary mixtures. Dyes and Pigments, 2008, 79, 59-68.	2.0	15
80	Wettability of cotton fabric by aqueous solutions of surfactants with different structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292, 236-245.	2.3	44
81	Biodegradability of cellulose fabric modified by imidazolidinone. Carbohydrate Polymers, 2007, 69, 478-488.	5.1	94
82	Structural and Water-Repellent Properties of a Urea/Poly(dimethylsiloxane) Solâ^'Gel Hybrid and Its Bonding to Cotton Fabric. Langmuir, 2006, 22, 6489-6497.	1.6	89
83	Thermodynamics of anionic dye–cationic surfactant interactions in cationic–nonionic surfactant mixtures in comparison with binary systems. Dyes and Pigments, 2006, 71, 43-53.	2.0	11
84	Influence of Repellent Finishing on the Surface Free Energy of Cellulosic Textile Substrates. Textile Reseach Journal, 2004, 74, 426-432.	1.1	36
85	A study of anionic dye–cationic surfactant interactions in mixtures of cationic and nonionic surfactants. Dyes and Pigments, 2002, 54, 221-237.	2.0	81
86	A study of dye–surfactant interactions. Part 3. Thermodynamics of the association of C.I. Acid Orange 7 and cetylpyridinium chloride in aqueous solutions. Dyes and Pigments, 2000, 46, 1-8.	2.0	48
87	Potentiometric Study of Intermolecular Interactions in Cationic-Nonionic Mixed Surfactant Systems. Textile Reseach Journal, 2000, 70, 454-459.	1.1	3
88	A study of dye–surfactant interactions. Part 2. The effect of purity of a commercial cationic azo dye on dye–surfactant complex formation Dyes and Pigments, 1999, 40, 1-9.	2.0	23
89	A study of dye-surfactant interactions. Part 1. Effect of chemical structure of acid dyes and surfactants on the complex formation. Dyes and Pigments, 1998, 36, 1-14.	2.0	87
90	Acid red 88 dye anion-selective electrode. Dyes and Pigments, 1994, 25, 69-78.	2.0	5

#	Article	IF	CITATIONS
91	A study of the self-association of simple azo dyes using the potentiometric method. Dyes and Pigments, 1994, 26, 257-276.	2.0	15
92	Biodegradation of cellulose fibers functionalized with CuO/Cu2O nanoparticles in combination with polycarboxylic acids. Cellulose, 0, , 1.	2.4	6