Lei Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5301214/publications.pdf

Version: 2024-02-01

279487 344852 2,261 36 23 36 citations h-index g-index papers 37 37 37 4034 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	ZnO with Different Morphologies Synthesized by Solvothermal Methods for Enhanced Photocatalytic Activity. Chemistry of Materials, 2009, 21, 2875-2885.	3.2	444
2	Ligand-Free Noble Metal Nanocluster Catalysts on Carbon Supports via "Soft―Nitriding. Journal of the American Chemical Society, 2016, 138, 4718-4721.	6.6	204
3	Novel Urchin-like CuO Synthesized by a Facile Reflux Method with Efficient Olefin Epoxidation Catalytic Performance. Chemistry of Materials, 2009, 21, 1253-1259.	3.2	151
4	Titanium Containing γâ€MnO ₂ (TM) Hollow Spheres: Oneâ€6tep Synthesis and Catalytic Activities in Li/Air Batteries and Oxidative Chemical Reactions. Advanced Functional Materials, 2010, 20, 3373-3382.	7.8	146
5	Heterogeneous acidic TiO2 nanoparticles for efficient conversion of biomass derived carbohydrates. Green Chemistry, 2014, 16, 785.	4.6	122
6	Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Applied Catalysis B: Environmental, 2020, 269, 118800.	10.8	108
7	Au–Carbon Electronic Interaction Mediated Selective Oxidation of Styrene. ACS Catalysis, 2017, 7, 3483-3488.	5.5	92
8	Templated Growth of Crystalline Mesoporous Materials: From Soft/Hard Templates to Colloidal Templates. Frontiers in Chemistry, 2019, 7, 22.	1.8	82
9	High energy density asymmetric supercapacitors based on MOF-derived nanoporous carbon/manganese dioxide hybrids. Chemical Engineering Journal, 2017, 322, 582-589.	6.6	80
10	Partial Surface Selenization of Cobalt Sulfide Microspheres for Enhancing the Hydrogen Evolution Reaction. ACS Catalysis, 2019, 9, 456-465.	5 . 5	71
11	Ultrafine Co-based Nanoparticle@Mesoporous Carbon Nanospheres toward High-Performance Supercapacitors. ACS Applied Materials & Supercapacitors.	4.0	69
12	Synthesis of Mesoporous CoS ₂ and Ni <i>>sub>xx \langle i>Co_{1â€"<i>x</i>}S₂ with Superior Supercapacitive Performance Using a Facile Solid-Phase Sulfurization. ACS Applied Materials & Description and Samp; Interfaces, 2017, 9, 36837-36848.</i>	4.0	64
13	Ultrasmall Au nanocatalysts supported on nitrided carbon for electrocatalytic CO ₂ reduction: the role of the carbon support in high selectivity. Nanoscale, 2018, 10, 14678-14686.	2.8	57
14	A facile synthesis of Fe ₃ C@mesoporous carbon nitride nanospheres with superior electrocatalytic activity. Nanoscale, 2016, 8, 5441-5445.	2.8	53
15	Gram-Scale Synthesis and Kinetic Study of Bright Carbon Dots from Citric Acid and <i>Citrus japonica</i> via a Microwave-Assisted Method. ACS Omega, 2017, 2, 5196-5208.	1.6	52
16	Engineering Surface Ligands of Noble Metal Nanocatalysts in Tuning the Product Selectivity. Catalysts, 2017, 7, 44.	1.6	50
17	Surface Basicity of Metal@TiO ₂ to Enhance Photocatalytic Efficiency for CO ₂ Reduction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38595-38603.	4.0	45
18	Direct growth of ultrasmall bimetallic AuPd nanoparticles supported on nitrided carbon towards ethanol electrooxidation. Electrochimica Acta, 2018, 269, 441-451.	2.6	41

#	Article	IF	CITATIONS
19	Single Chain Polymeric Nanoparticles to Promote Selective Hydroxylation Reactions of Phenol Catalyzed by Copper. ACS Macro Letters, 2017, 6, 652-656.	2.3	38
20	Template-free Synthesis of Mesoporous and Crystalline Transition Metal Oxide Nanoplates with Abundant Surface Defects. Matter, 2020, 2, 1244-1259.	5.0	38
21	Surface Engineering of Spherical Metal Nanoparticles with Polymers toward Selective Asymmetric Synthesis of Nanobowls and Janusâ€Type Dimers. Small, 2017, 13, 1700091.	5.2	31
22	Ultrafine and Ligandâ€Free Precious Metal (Ru, Ag, Au, Rh and Pd) Nanoclusters Supported on Phosphorusâ€Doped Carbon. Chemistry - A European Journal, 2018, 24, 2565-2569.	1.7	30
23	Highly Crystalline Mesoporous Titania Loaded with Monodispersed Gold Nanoparticles: Controllable Metal–Support Interaction in Porous Materials. ACS Applied Materials & amp; Interfaces, 2020, 12, 9617-9627.	4.0	24
24	Potassium modified layered Ln ₂ O ₂ CO ₃ (Ln: La, Nd, Sm, Eu) materials: efficient and stable heterogeneous catalysts for biofuel production. Green Chemistry, 2015, 17, 3600-3608.	4.6	22
25	"Enzymatic―Photoreduction of Carbon Dioxide using Polymeric Metallofoldamers Containing Nickel–Thiolate Cofactors. ChemCatChem, 2017, 9, 1157-1162.	1.8	22
26	Self-limiting growth of ligand-free ultrasmall bimetallic nanoparticles on carbon through under temperature reduction for highly efficient methanol electrooxidation and selective hydrogenation. Applied Catalysis B: Environmental, 2020, 264, 118553.	10.8	20
27	Multiblock thermoplastic elastomers via one-pot thiol–ene reaction. Polymer Chemistry, 2016, 7, 4824-4832.	1.9	18
28	Coâ€Template Directed Synthesis of Gold Nanoparticles in Mesoporous Titanium Dioxide. Chemistry - A European Journal, 2018, 24, 9651-9657.	1.7	18
29	Crystalline Mesoporous Complex Oxides: Porosityâ€Controlled Electromagnetic Response. Advanced Functional Materials, 2020, 30, 1909491.	7.8	15
30	Supported Pt Nanoparticles on Mesoporous Titania for Selective Hydrogenation of Phenylacetylene. Frontiers in Chemistry, 2020, 8, 581512.	1.8	11
31	Oxidative nucleation and growth of Janus-type MnO _x –Ag and MnO _x –Agl nanoparticles. Nanoscale, 2019, 11, 15147-15155.	2.8	10
32	Polymerâ€Assisted Coâ€Assembly towards Synthesis of Mesoporous Titania Encapsulated Monodisperse PdAu for Highly Selective Hydrogenation of Phenylacetylene. ChemCatChem, 2020, 12, 1476-1482.	1.8	8
33	Structural Engineering in the Self-Assembly of Amphiphilic Block Copolymers with Reactive Additives: Micelles, Vesicles, and Beyond. Langmuir, 2021, 37, 9865-9872.	1.6	7
34	Templated synthesis of crystalline mesoporous CeO ₂ with organosilane-containing polymers: balancing porosity, crystallinity and catalytic activity. Materials Futures, 2022, 1, 025302.	3.1	7
35	Direct Construction of Mesoporous Metal Sulfides via Reactive Spray Deposition Technology. ACS Applied Energy Materials, 2019, 2, 2370-2374.	2.5	6
36	Bioinspired Design of Hybrid Polymer Catalysts with Multicopper Sites for Oxygen Reduction. ChemCatChem, 2020, 12, 5932-5937.	1.8	5