Byungho Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5300872/publications.pdf

Version: 2024-02-01

759233 713466 24 554 12 21 h-index citations g-index papers 24 24 24 1314 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The preclinical efficacy of the novel hypomethylating agent NTX-301 as a monotherapy and in combination with venetoclax in acute myeloid leukemia. Blood Cancer Journal, 2022, 12, 57.	6.2	4
2	The role of TRIM51 as a multipurpose biomarker in melanoma. Translational Cancer Research, 2021, 10, 4327-4337.	1.0	1
3	A Study on Preclinical Efficacy, Underlying Mechanisms, and Sensitivity Markers of a Novel Hypomethylating Agent Ntx-301 in Acute Myeloid Leukemia. Blood, 2021, 138, 2348-2348.	1.4	O
4	A guide for bioinformaticians: â€~omics-based drug discovery for precision oncology. Drug Discovery Today, 2020, 25, 1897-1904.	6.4	10
5	<i>ONECUT2</i> upregulation is associated with CpG hypomethylation at promoterâ€proximal DNA in gastric cancer and triggers <i>ACSL5</i> . International Journal of Cancer, 2020, 146, 3354-3368.	5.1	19
6	Identification of TREâ€130 as Reversible Inhibitor of Panâ€EGFR Mutants while Sparing EGFR Wildâ€Type Activity. Bulletin of the Korean Chemical Society, 2019, 40, 1222-1225.	1.9	1
7	Discovery of 1,2â€Naphthoquinone Derivatives as Potent p53â€MDM2 Interaction Inhibitors. Bulletin of the Korean Chemical Society, 2019, 40, 1236-1239.	1.9	O
8	ANKRD9 is associated with tumor suppression as a substrate receptor subunit of ubiquitin ligase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3145-3153.	3.8	13
9	Epigenetic silencing of miR-1271 enhances MEK1 and TEAD4 expression in gastric cancer. Cancer Medicine, 2018, 7, 3411-3424.	2.8	21
10	Variability in Chromatin Architecture and Associated DNA Repair at Genomic Positions Containing Somatic Mutations. Cancer Research, 2017, 77, 2822-2833.	0.9	13
11	Intrinsic Molecular Processes: Impact on Mutagenesis. Trends in Cancer, 2017, 3, 357-371.	7.4	4
12	Genomic and epigenomic heterogeneity in molecular subtypes of gastric cancer. World Journal of Gastroenterology, 2016, 22, 1190.	3.3	57
13	Genetic alterations and their clinical implications in gastric cancer peritoneal carcinomatosis revealed by whole-exome sequencing of malignant ascites. Oncotarget, 2016, 7, 8055-8066.	1.8	42
14	A proteogenomic approach for protein-level evidence of genomic variants in cancer cells. Scientific Reports, 2016, 6, 35305.	3.3	14
15	Identification of molecular subtypes and significantly mutated genes in gastric cancer using next-generation sequencing. Translational Cancer Research, 2016, 5, S81-S83.	1.0	O
16	Genome-wide mutation profiles of colorectal tumors and associated liver metastases at the exome and transcriptome levels. Oncotarget, 2015, 6, 22179-22190.	1.8	44
17	Decrease of 5hmC in gastric cancers is associated withTET1silencing due to with DNA methylation and bivalent histone marks atTET1CpG island 3′-shore. Oncotarget, 2015, 6, 37647-37662.	1.8	27
18	Integrative genomics analysis reveals the multilevel dysregulation and oncogenic characteristics of TEAD4 in gastric cancer. Carcinogenesis, 2014, 35, 1020-1027.	2.8	79

#	Article	IF	CITATION
19	Maspin genetically and functionally associates with gastric cancer by regulating cell cycle progression. Carcinogenesis, 2012, 33, 2344-2350.	2.8	16
20	Increased genetic susceptibility to intestinalâ€type gastric cancer is associated with increased activity of the <i>RUNX</i> 3 distal promoter. Cancer, 2011, 117, 5161-5171.	4.1	23
21	Accurate quantification of transcriptome from RNA-Seq data by effective length normalization. Nucleic Acids Research, 2011, 39, e9-e9.	14.5	101
22	Genetic variants A1826H and D2937Y in GAG- \hat{l}^2 domain of versican influence susceptibility to intestinal-type gastric cancer. Journal of Cancer Research and Clinical Oncology, 2010, 136, 195-201.	2.5	9
23	<i>SERPINE1</i> intron polymorphisms affecting gene expression are associated with diffuseâ€type gastric cancer susceptibility. Cancer, 2010, 116, 4248-4255.	4.1	35
24	A Regulatory Polymorphism at Position -309 in PTPRCAP Is Associated with Susceptibility to Diffuse-type Gastric Cancer and Gene Expression. Neoplasia, 2009, 11, 1340-1347.	5.3	21