
Thomas Litman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5300311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HSP90 inhibitor RGRNâ€305 for oral treatment of plaqueâ€type psoriasis: efficacy, safety and biomarker results in an openâ€label proofâ€ofâ€concept study*. British Journal of Dermatology, 2022, 186, 861-874.	1.4	19
2	The transcriptome of hand eczema assessed by tape stripping. Contact Dermatitis, 2022, 86, 71-79.	0.8	12
3	C10orf99/GPR15L Regulates Proinflammatory Response of Keratinocytes and Barrier Formation of the Skin. Frontiers in Immunology, 2022, 13, 825032.	2.2	6
4	Temporal and Spatial Variation of the Skin-Associated Bacteria from Healthy Participants and Atopic Dermatitis Patients. MSphere, 2022, 7, e0091721.	1.3	5
5	Profiling the Atopic Dermatitis Epidermal Transcriptome by Tape Stripping and BRB-seq. International Journal of Molecular Sciences, 2022, 23, 6140.	1.8	1
6	MicroRNA-93 Targets p21 and Promotes Proliferation in Mycosis Fungoides T Cells. Dermatology, 2021, 237, 277-282.	0.9	8
7	Diagnostic Two-Gene Classifier in Early-Stage Mycosis Fungoides: A Retrospective MulticenterÂStudy. Journal of Investigative Dermatology, 2021, 141, 213-217.e5.	0.3	6
8	The stratum corneum transcriptome in atopic dermatitis can be assessed by tape stripping. Journal of Dermatological Science, 2021, 101, 14-21.	1.0	11
9	Inhibition of succinate dehydrogenase activity impairs human T cell activation and function. Scientific Reports, 2021, 11, 1458.	1.6	24
10	Human pathways in animal models: possibilities and limitations. Nucleic Acids Research, 2021, 49, 1859-1871.	6.5	35
11	R-Loop–Mediated ssDNA Breaks Accumulate Following Short-Term Exposure to the HDAC Inhibitor Romidepsin. Molecular Cancer Research, 2021, 19, 1361-1374.	1.5	12
12	Colonic Stent as Bridge to Surgery for Malignant Obstruction Induces Gene Expressional Changes Associated with a More Aggressive Tumor Phenotype. Annals of Surgical Oncology, 2021, 28, 8519-8531.	0.7	1
13	Staphylococcus aureus Induces Signal Transducer and Activator of Transcription 5‒Dependent miR-155 Expression in Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2021, 141, 2449-2458.	0.3	15
14	Regional Differences in Neuroinflammation-Associated Gene Expression in the Brain of Sporadic Creutzfeldt–Jakob Disease Patients. International Journal of Molecular Sciences, 2021, 22, 140.	1.8	8
15	ll̂ºBζ is a key player in the antipsoriatic effects of secukinumab. Journal of Allergy and Clinical Immunology, 2020, 145, 379-390.	1.5	24
16	Metastatic and recurrent adrenocortical cancer is not defined by its genomic landscape. BMC Medical Genomics, 2020, 13, 165.	0.7	15
17	MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. Cancers, 2020, 12, 1229.	1.7	28
18	Staphylococcus aureus enterotoxins induce FOXP3 in neoplastic T cells in Sézary syndrome. Blood Cancer Iournal. 2020. 10. 57.	2.8	24

THOMAS LITMAN

#	Article	IF	CITATIONS
19	Suppressed microRNAâ€195â€5p expression in mycosis fungoides promotes tumor cell proliferation. Experimental Dermatology, 2020, 30, 1141-1149.	1.4	4
20	Distinct immune phenotypes in infants developing asthma during childhood. Science Translational Medicine, 2020, 12, .	5.8	19
21	Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood, 2019, 134, 1072-1083.	0.6	94
22	Structural determinants underlying permeant discrimination of the Cx43 hemichannel. Journal of Biological Chemistry, 2019, 294, 16789-16803.	1.6	15
23	Personalized medicine—concepts, technologies, and applications in inflammatory skin diseases. Apmis, 2019, 127, 386-424.	0.9	36
24	HER2 and p95HER2 differentially regulate miRNA expression in MCF-7 breast cancer cells and downregulate MYB proteins through miR-221/222 and miR-503. Scientific Reports, 2019, 9, 3352.	1.6	15
25	Expression and function of Kv1.3 channel in malignant T cells in Sézary syndrome. Oncotarget, 2019, 10, 4894-4906.	0.8	3
26	Diagnostic 2-Gene Classifier in Early-Stage Mycosis Fungoides: A Retrospective Multicenter Study. Blood, 2019, 134, 2772-2772.	0.6	0
27	Prognostic miRNA classifier in early-stage mycosis fungoides: development and validation in a Danish nationwide study. Blood, 2018, 131, 759-770.	0.6	54
28	Single-cell heterogeneity in Sézary syndrome. Blood Advances, 2018, 2, 2115-2126.	2.5	78
29	Effects of glucocorticoids on stratum corneum lipids and function in human skin—A detailed lipidomic analysis. Journal of Dermatological Science, 2017, 88, 330-338.	1.0	23
30	Major differences between human atopic dermatitis and murine models, as determined by using global transcriptomic profiling. Journal of Allergy and Clinical Immunology, 2017, 139, 562-571.	1.5	96
31	Adrenocortical Cancer: A Molecularly Complex Disease Where Surgery Matters. Clinical Cancer Research, 2016, 22, 4989-5000.	3.2	15
32	Distinct molecular signatures of mild extrinsic and intrinsic atopic dermatitis. Experimental Dermatology, 2016, 25, 453-459.	1.4	63
33	Tumor-Preferential Induction of Immune Responses and Epidermal Cell Death in Actinic Keratoses by Ingenol Mebutate. PLoS ONE, 2016, 11, e0160096.	1.1	19
34	The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Scientific Reports, 2015, 5, 16148.	1.6	269
35	Meta-analysis derived atopic dermatitis (MADAD) transcriptome defines a robust AD signature highlighting the involvement of atherosclerosis and lipid metabolism pathways. BMC Medical Genomics, 2015, 8, 60.	0.7	123
36	Romidepsin in peripheral and cutaneous Tâ€cell lymphoma: mechanistic implications from clinical and correlative data. British Journal of Haematology, 2015, 170, 96-109.	1.2	51

THOMAS LITMAN

#	Article	IF	CITATIONS
37	Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection. Journal of Allergy and Clinical Immunology, 2015, 135, 153-163.	1.5	187
38	Kinetics of gene expression and bone remodelling in the clinical phase of collagen-induced arthritis. Arthritis Research and Therapy, 2015, 17, 43.	1.6	20
39	Glucose tolerance is associated with differential expression of microRNAs in skeletal muscle: results from studies of twins with and without type 2 diabetes. Diabetologia, 2015, 58, 363-373.	2.9	53
40	miR-155, identified as anti-metastatic by global miRNA profiling of a metastasis model, inhibits cancer cell extravasation and colonizationin vivoand causes significant signaling alterations. Oncotarget, 2015, 6, 29224-29239.	0.8	18
41	Efficient Identification of miRNAs for Classification of Tumor Origin. Journal of Molecular Diagnostics, 2014, 16, 106-115.	1.2	54
42	Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cellular Oncology (Dordrecht), 2014, 37, 215-227.	2.1	62
43	Histone deacetylase inhibitorâ€mediated cell death is distinct from its global effect on chromatin. Molecular Oncology, 2014, 8, 1379-1392.	2.1	39
44	STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. Cell Cycle, 2013, 12, 1939-1947.	1.3	123
45	The Rectal Cancer microRNAome – microRNA Expression in Rectal Cancer and Matched Normal Mucosa. Clinical Cancer Research, 2012, 18, 4919-4930.	3.2	174
46	Global microRNA Analysis of the NCI-60 Cancer Cell Panel. Molecular Cancer Therapeutics, 2011, 10, 375-384.	1.9	74
47	MicroRNA Expression Profiling of the Porcine Developing Brain. PLoS ONE, 2011, 6, e14494.	1.1	52
48	High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer. Apmis, 2011, 119, 663-673.	0.9	74
49	Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood, 2011, 118, 5891-5900.	0.6	237
50	MicroRNAs and potential target interactions in psoriasis. Journal of Dermatological Science, 2010, 58, 177-185.	1.0	193
51	Identification and analysis of miRNAs in human breast cancer and teratoma samples using deep sequencing. BMC Medical Genomics, 2009, 2, 35.	0.7	40
52	Differential effects of class I isoform histone deacetylase depletion and enzymatic inhibition by belinostat or valproic acid in HeLa cells. Molecular Cancer, 2008, 7, 70.	7.9	34
53	New ABC transporters in multi-drug resistance. Expert Opinion on Therapeutic Targets, 2000, 4, 561-580.	1.0	6
54	The Product of the ABC Half-Transporter Gene ABCG2 (BCRP/MXR/ABCP) Is Expressed in the Plasma Membrane. Biochemical and Biophysical Research Communications, 2000, 271, 42-46.	1.0	160

#	Article	IF	CITATIONS
55	Efflux of Rhodamine From CD56+ Cells as a Surrogate Marker for Reversal of P-Glycoprotein–Mediated Drug Efflux by PSC 833. Blood, 1999, 93, 306-314.	0.6	68
56	Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Letters, 1999, 146, 117-126.	3.2	262
57	Water transport by the Na+/glucose cotransporter under isotonic conditions Proceedings of a meeting held in Paris, 27-30 April, 1997, as a tribute to Jacques Bourguet.*. Biology of the Cell, 1997, 89, 307-312.	0.7	45