Shanshan Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5300026/publications.pdf

Version: 2024-02-01

414414 567281 1,170 32 15 32 citations h-index g-index papers 34 34 34 1759 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Designed biomaterials to mimic the mechanical properties of muscles. Nature, 2010, 465, 69-73.	27.8	480
2	Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts: Some mechanism insights. Journal of Catalysis, 2008, 255, 269-278.	6.2	81
3	Influences of CeO2 microstructures on the structure and activity of Au/CeO2/SiO2 catalysts in CO oxidation. Journal of Molecular Catalysis A, 2009, 306, 40-47.	4.8	75
4	Design of Self-Healing and Electrically Conductive Silk Fibroin-Based Hydrogels. ACS Applied Materials & Long Representation & Long Representation (2019, 11, 20394-20403).	8.0	57
5	Synthesis and characterization of hydroxyapatite nanoparticles prepared by a high-gravity precipitation method. Ceramics International, 2015, 41, 14340-14349.	4.8	52
6	Towards constructing extracellular matrix-mimetic hydrogels: An elastic hydrogel constructed from tandem modular proteins containing tenascin FnIII domains. Acta Biomaterialia, 2013, 9, 6481-6491.	8.3	45
7	Tandem Modular Protein-Based Hydrogels Constructed Using a Novel Two-Component Approach. Langmuir, 2012, 28, 2269-2274.	3 . 5	35
8	Silk fibroin-based hydrogels as a protective matrix for stabilization of enzymes against pH denaturation. Molecular Catalysis, 2018, 457, 24-32.	2.0	32
9	Synthesis of chemically crosslinked pullulan/gelatin-based extracellular matrix-mimetic gels. International Journal of Biological Macromolecules, 2019, 122, 1262-1270.	7.5	27
10	Restructuringâ€Induced Activity of SiO ₂ â€Supported Large Au Nanoparticles in Lowâ€Temperature CO Oxidation. Chemistry - A European Journal, 2008, 14, 10595-10602.	3.3	26
11	Singleâ€Moleculeâ€Level Evidence for the Osmophobic Effect. Angewandte Chemie - International Edition, 2011, 50, 4394-4397.	13.8	25
12	Dual-responsive star-shaped polypeptides for drug delivery. RSC Advances, 2016, 6, 6368-6377.	3.6	21
13	Silk Fibroin-Based Materials for Catalyst Immobilization. Molecules, 2020, 25, 4929.	3.8	21
14	Self-Assembled Regenerated Silk Fibroin Microsphere-Embedded Fe ₃ O ₄ Magnetic Nanoparticles for Immobilization of Zymolyase. ACS Omega, 2019, 4, 21612-21619.	3.5	17
15	High water content silk protein-based hydrogels with tunable elasticity fabricated via a Ru(II) mediated photochemical cross-linking method. Fibers and Polymers, 2017, 18, 1831-1840.	2.1	15
16	Protein tetrazinylation via diazonium coupling for covalent and catalyst-free bioconjugation. Organic and Biomolecular Chemistry, 2015, 13, 11422-11425.	2.8	14
17	Microwave-assisted fast and efficient dissolution of silkworm silk for constructing fibroin-based biomaterials. Chemical Engineering Science, 2018, 189, 286-295.	3.8	14
18	Immobilized laccase-catalyzed coupling for construction of silk fibroin-lignin composite hydrogels. Applied Catalysis A: General, 2020, 597, 117541.	4.3	14

#	Article	IF	CITATIONS
19	Elastic-Modulus-Dependent Macroscopic Supramolecular Assembly of Poly(dimethylsiloxane) for Understanding Fast Interfacial Adhesion. Langmuir, 2021, 37, 4276-4283.	3.5	14
20	Illustration and application of enhancing effect of arginine on interactions between nano-clays: self-healing hydrogels. Soft Matter, 2019, 15, 303-311.	2.7	13
21	Iron oxide magnetic nanoparticles exhibiting zymolyase-like lytic activity. Chemical Engineering Journal, 2020, 394, 125000.	12.7	13
22	Layer-by-Layer Assembled Chitosan-Based Antibacterial Films with Improved Stability under Alkaline Conditions. Industrial & Camp; Engineering Chemistry Research, 2016, 55, 10664-10670.	3.7	10
23	Polymer micelles as building blocks for layer-by-layer assembly of multilayers under a high-gravity field. Chemical Engineering Journal, 2016, 293, 302-310.	12.7	9
24	Host-guest complexes of \hat{l}^2 -cyclodextrin with methyl orange/methylene blue-derived multi-heteroatom doped carbon materials for supercapacitors. Composites Communications, 2019, 16, 117-123.	6.3	9
25	Using single molecule force spectroscopy to facilitate a rational design of Ca ²⁺ -responsive β-roll peptide-based hydrogels. Journal of Materials Chemistry B, 2018, 6, 5303-5312.	5.8	8
26	A Simple, Low-cost Method to Fabricate Drag-reducing Coatings on a Macroscopic Model Ship. Chemical Research in Chinese Universities, 2018, 34, 616-621.	2.6	6
27	Engineering Protein-Clay Nanosheets Composite Hydrogels with Designed Arginine-Rich Proteins. Langmuir, 2019, 35, 7255-7260.	3.5	5
28	Combined "post-infiltration, subsequent photochemical cross-linking―and "cross-linking and selective etching―strategies to fabricate nanoporous layer-by-layer assembled multilayers. Colloid and Polymer Science, 2017, 295, 317-325.	2.1	4
29	Generation of Yeast Protoplasts by Lytic Actions of Iron Oxide Magnetic Nanoparticles. Industrial & Lamp; Engineering Chemistry Research, 2021, 60, 9012-9021.	3.7	3
30	Effect of Microwave Irradiation on Dipeptides and Proteins Derived from Silk During Solvation. Advanced Fiber Materials, 2022, 4, 448-456.	16.1	3
31	Preparation of silk fibroin-based microspheres under high-gravity field. Chemical Engineering and Processing: Process Intensification, 2020, 158, 108180.	3.6	2
32	Research fronts of Chemical Biology. Pure and Applied Chemistry, 2021, 93, 1473-1485.	1.9	0