Adrienne M Gorman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5299872/publications.pdf

Version: 2024-02-01

86 papers

16,154 citations

39 h-index 80 g-index

91 all docs 91 docs citations

times ranked

91

29791 citing authors

#	Article	IF	CITATIONS
1	Regulated IRE1α-dependent decay (RIDD)-mediated reprograming of lipid metabolism in cancer. Nature Communications, 2022, 13, 2493.	12.8	28
2	Inhibition of IRE1α RNase activity sensitizes patientâ€derived acute myeloid leukaemia cells to proteasome inhibitors. Journal of Cellular and Molecular Medicine, 2022, 26, 4629-4633.	3.6	2
3	An Emerging Role for the Unfolded Protein Response in Pancreatic Cancer. Cancers, 2021, 13, 261.	3.7	24
4	Regulation of lipid metabolism by the unfolded protein response. Journal of Cellular and Molecular Medicine, 2021, 25, 1359-1370.	3.6	83
5	The stressosome, a caspaseâ€8â€activating signalling complex assembled in response to cell stress in an ATG5â€mediated manner. Journal of Cellular and Molecular Medicine, 2021, 25, 8809-8820.	3.6	9
6	Time and region-dependent manner of increased brain derived neurotrophic factor and TrkB in rat brain after binge-like methamphetamine exposure. Neuroscience Letters, 2020, 715, 134606.	2.1	5
7	Molecular modeling provides a structural basis for PERK inhibitor selectivity towards RIPK1. RSC Advances, 2020, 10, 367-375.	3.6	17
8	Local intracerebral inhibition of IRE1 by MKC8866 sensitizes glioblastoma to irradiation/chemotherapy in vivo. Cancer Letters, 2020, 494, 73-83.	7.2	32
9	The IRE1 and PERK arms of the unfolded protein response promote survival of rhabdomyosarcoma cells. Cancer Letters, 2020, 490, 76-88.	7.2	11
10	Tumour Cell Secretome in Chemoresistance and Tumour Recurrence. Trends in Cancer, 2020, 6, 489-505.	7.4	101
11	Novel Pt(IV) Prodrugs Displaying Antimitochondrial Effects. Molecular Pharmaceutics, 2020, 17, 3009-3023.	4.6	8
12	Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications. FEBS Journal, 2019, 286, 241-278.	4.7	568
13	Inhibition of IRE1 \hat{l} ± RNase activity reduces NLRP3 inflammasome assembly and processing of pro-IL1 \hat{l} 2. Cell Death and Disease, 2019, 10, 622.	6.3	33
14	Effect of Kinase Inhibiting RNase Attenuator (KIRA) Compounds on the Formation of Face-to-Face Dimers of Inositol-Requiring Enzyme 1: Insights from Computational Modeling. International Journal of Molecular Sciences, 2019, 20, 5538.	4.1	6
15	Application of a New Multiplexed Array for Rapid, Sensitive, Simultaneous and Quantitative Assessment of Spliced and Unspliced XBP1. Biological Procedures Online, 2019, 21, 22.	2.9	4
16	Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases. Cytokine, 2019, 124, 154577.	3.2	54
17	RIP2 enhances cell survival by activation of NF-Äß in triple negative breast cancer cells. Biochemical and Biophysical Research Communications, 2018, 497, 115-121.	2.1	28
18	Generation of rationally-designed nerve growth factor (NGF) variants with receptor specificity. Biochemical and Biophysical Research Communications, 2018, 495, 700-705.	2.1	9

#	Article	IF	Citations
19	Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response., 2018, 184, 13-41.		230
20	Binding Analysis of the Inositol-Requiring Enzyme 1 Kinase Domain. ACS Omega, 2018, 3, 13313-13322.	3.5	9
21	The Unfolded Protein Response in Breast Cancer. Cancers, 2018, 10, 344.	3.7	62
22	Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nature Communications, 2018, 9, 3267.	12.8	192
23	EIF2S1., 2018, , 1512-1519.		0
24	Homology model of the human tRNA splicing ligase RtcB. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1983-1993.	2.6	24
25	HSPB1 facilitates ERK-mediated phosphorylation and degradation of BIM to attenuate endoplasmic reticulum stress-induced apoptosis. Cell Death and Disease, 2017, 8, e3026-e3026.	6.3	33
26	The integrated stress response. EMBO Reports, 2016, 17, 1374-1395.	4.5	1,676
27	Nerve growth factor (NGF)-mediated regulation of p75NTR expression contributes to chemotherapeutic resistance in triple negative breast cancer cells. Biochemical and Biophysical Research Communications, 2016, 478, 1541-1547.	2.1	33
28	Targeting the angio-proteostasis network: Combining the forces against cancer., 2016, 167, 1-12.		10
29	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
30	Neurotrophins and B-cell malignancies. Cellular and Molecular Life Sciences, 2016, 73, 41-56.	5.4	19
31	Induction of Autophagy. , 2015, , 91-101.		7
32	A close connection between the PERK and IRE arms of the UPR and the transcriptional regulation of autophagy. Biochemical and Biophysical Research Communications, 2015, 456, 305-311.	2.1	42
33	The eIF2α kinases: their structures and functions. Cellular and Molecular Life Sciences, 2013, 70, 3493-3511.	5.4	660
34	Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cellular and Molecular Life Sciences, 2013, 70, 2425-2441.	5.4	243
35	The novel toluidine sulphonamide EL102 shows pre-clinical in vitro and in vivo activity against prostate cancer and circumvents MDR1 resistance. British Journal of Cancer, 2013, 109, 2131-2141.	6.4	10
36	Disruption of microRNA Biogenesis Confers Resistance to ER Stress-Induced Cell Death Upstream of the Mitochondrion. PLoS ONE, 2013, 8, e73870.	2.5	32

#	Article	lF	CITATIONS
37	Stress management at the ER: Regulators of ER stress-induced apoptosis. , 2012, 134, 306-316.		330
38	The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biology of the Cell, 2012, 104, 259-270.	2.0	176
39	Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. Journal of Cellular and Molecular Medicine, 2011, 15, 2025-2039.	3.6	277
40	Nerve Growth Factor in Cancer Cell Death and Survival. Cancers, 2011, 3, 510-530.	3.7	92
41	The effect of laminin peptide gradient in enzymatically crossâ€linked collagen scaffolds on neurite growth. Journal of Biomedical Materials Research - Part A, 2010, 92A, 484-492.	4.0	38
42	The effects of cannabinoid drugs on abnormal involuntary movements in dyskinetic and non-dyskinetic 6-hydroxydopamine lesioned rats. Brain Research, 2010, 1363, 40-48.	2.2	36
43	Cell Stress and Cell Death. International Journal of Cell Biology, 2010, 2010, 1-2.	2.5	33
44	Inhibition by Anandamide of 6-Hydroxydopamine-Induced Cell Death in PC12 Cells. International Journal of Cell Biology, 2010, 2010, 1-10.	2.5	25
45	Cellular Stress Responses: Cell Survival and Cell Death. International Journal of Cell Biology, 2010, 2010, 1-23.	2.5	984
46	Loss of cannabinoid CB1 receptor expression in the 6-hydroxydopamine-induced nigrostriatal terminal lesion model of Parkinson's disease in the rat. Brain Research Bulletin, 2010, 81, 543-548.	3.0	42
47	Targeting the endoplasmic reticulum-stress response as an anticancer strategy. European Journal of Pharmacology, 2009, 625, 234-246.	3.5	263
48	Involvement of Akt in neurite outgrowth. Cellular and Molecular Life Sciences, 2009, 66, 2975-2984.	5.4	175
49	Effect of functionalized micropatterned PLGA on guided neurite growth. Acta Biomaterialia, 2009, 5, 580-588.	8.3	140
50	Heat shock protein 27 in neuronal survival and neurite outgrowth. Biochemical and Biophysical Research Communications, 2009, 382, 6-8.	2.1	34
51	Considerations and recent advances in neuroscience. Biochemical Society Transactions, 2009, 37, 299-302.	3.4	1
52	The Role of Hsps in Neuronal Differentiation and Development., 2009,, 25-37.		4
53	Heat Shock Proteins and the Regulation of Apoptosis. , 2009, , 53-66.		3
54	Heat shock enhances NGF-induced neurite elongation which is not mediated by Hsp25 in PC12 cells. Brain Research, 2008, 1221, 14-23.	2.2	14

#	Article	IF	Citations
55	Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. Journal of Cellular and Molecular Medicine, 2008, 12, 2263-2280.	3.6	258
56	Nerve growth factor blocks thapsigarginâ€induced apoptosis at the level of the mitochondrion <i>via</i> regulation of Bim. Journal of Cellular and Molecular Medicine, 2008, 12, 2482-2496.	3.6	38
57	Functionality of NGF-protected PC12 cells following exposure to 6-hydroxydopamine. Biochemical and Biophysical Research Communications, 2006, 351, 890-895.	2.1	27
58	Mediators of endoplasmic reticulum stressâ€induced apoptosis. EMBO Reports, 2006, 7, 880-885.	4.5	2,033
59	Dexamethasone inhibits apoptosis in C6 glioma cells through increased expression of Bcl-XL. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1247-1255.	4.9	29
60	Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells. Biochemical and Biophysical Research Communications, 2005, 327, 801-810.	2.1	89
61	Hypoxia induces neurite outgrowth in PC12 cells that is mediated through adenosine A2A receptors. Neuroscience, 2005, 131, 321-329.	2.3	35
62	On the role of Hsp27 in regulating apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2003, 8, 61-70.	4.9	455
63	Heat shock protects PC12 cells against MPP+ toxicity. Brain Research, 2003, 993, 133-139.	2.2	58
64	Modulation by Ionotropic Excitatory Amino Acids and Potassium of (±)-1-Aminocyclopentane-trans-1,3-Dicarboxylic Acid-Stimulated Phosphoinositide Hydrolysis in Mouse Cerebellar Granule Cells. Journal of Neurochemistry, 2002, 65, 2473-2483.	3.9	2
65	Cellular longevity: role of apoptosis and replicative senescence. Biogerontology, 2002, 3, 195-206.	3.9	43
66	Involvement of caspase-3 in photoreceptor cell apoptosis induced by in vivo blue light exposure. Investigative Ophthalmology and Visual Science, 2002, 43, 3349-54.	3.3	52
67	Apoptotic morphology does not always require caspase activity in rat cerebellar granule neurons. Neurotoxicity Research, 2001, 3, 501-514.	2.7	34
68	Dexamethasone pre-treatment interferes with apoptotic death in glioma cells. Neuroscience, 2000, 96, 417-425.	2.3	80
69	Role of Mitochondria in Neuronal Apoptosis. Developmental Neuroscience, 2000, 22, 348-358.	2.0	72
70	Cytochrome c release and caspase-3 activation during colchicine-induced apoptosis of cerebellar granule cells. European Journal of Neuroscience, 1999, 11, 1067-1072.	2.6	72
71	Application of a fluorometric assay to detect caspase activity in thymus tissue undergoing apoptosis in vivo. Journal of Immunological Methods, 1999, 226, 43-48.	1.4	48
72	Antioxidant-mediated inhibition of the heat shock response leads to apoptosis. FEBS Letters, 1999, 445, 98-102.	2.8	123

#	Article	lF	Citations
73	Apoptosis in neuronal cells. NeuroReport, 1998, 9, R49-R55.	1.2	92
74	Role of Bcr-Abl Kinase in Resistance to Apoptosis. Advances in Pharmacology, 1997, 41, 533-552.	2.0	7
75	Role of peroxide and superoxide anion during tumour cell apoptosis. FEBS Letters, 1997, 404, 27-33.	2.8	201
76	Use of flow cytometry techniques in studying mechanisms of apoptosis in leukemic cells. Cytometry, 1997, 29, 97-105.	1.8	48
77	Oxidative stress and apoptosis in neurodegeneration. Journal of the Neurological Sciences, 1996, 139, 45-52.	0.6	163
78	Reactive oxygen intermediate(s) (ROI): Common mediator(s) of poly(ADP-ribose)polymerase (PARP) cleavage and apoptosis. FEBS Letters, 1996, 392, 299-303.	2.8	81
79	Sustained <i>c-fos</i> expression is associated with excitotoxicity during the development of neuronal cells <i>in vitro</i> Biochemical Society Transactions, 1996, 24, 6S-6S.	3.4	7
80	Apoptosis-the story so far Experientia, 1996, 52, 933-941.	1.2	72
81	Excitatory amino acid-induced cytotoxicity in primary cultures of mouse cerebellar granule cells correlates with elevated, sustained c-fos protoncogene expression. Neuroscience Letters, 1995, 191, 116-120.	2.1	24
82	L-TRANs-Pyrrolidine-2,4-dicarboxylate and cis-1-aminocyclobutane-1, 3-dicarboxylate behave as transportable, competitive inhibitors of the high-affinity glutamate transporters. Biochemical Pharmacology, 1994, 47, 267-274.	4.4	82
83	Sulphur-containing excitatory amino acid-stimulated inositol phosphate formation in primary cultures of cerebellar granule cells is mediated predominantly by N-methyl-d-aspartate receptors. Neuroscience, 1994, 59, 299-308.	2.3	15
84	In vitro screening for anticonvulsant-induced teratogenesis in neural primary cultures and cell lines. International Journal of Developmental Neuroscience, 1990, 8, 143-150.	1.6	27
85	Antiproliferative Action of Benzodiazepines in Cultured Brain Cells Is Not Mediated Through the Peripheral-Type Benzodiazepine Acceptor. Journal of Neurochemistry, 1989, 53, 849-855.	3.9	43
86	Current Concepts in ER Stress-Induced Apoptosis. Journal of Carcinogenesis & Mutagenesis, 0, s6, .	0.3	13