List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/529967/publications.pdf Version: 2024-02-01

ARDAHAM | SUSSIMEIN

#	Article	IF	CITATIONS
1	Identification of an allatostatin C signaling system in mollusc Aplysia. Scientific Reports, 2022, 12, 1213.	1.6	7
2	Exogenous expression of an allatotropin-related peptide receptor increased the membrane excitability in Aplysia neurons. Molecular Brain, 2022, 15, 42.	1.3	4
3	Nitric oxide and l-arginine have mixed effects on mammalian feeding in condition of a high motivation to feed. Appetite, 2021, 158, 105011.	1.8	1
4	Multiple Local Synaptic Modifications at Specific Sensorimotor Connections after Learning Are Associated with Behavioral Adaptations That Are Components of a Global Response Change. Journal of Neuroscience, 2020, 40, 4363-4371.	1.7	14
5	Successful and unsuccessful attempts to swallow in a reduced <i>Aplysia</i> preparation regulate feeding responses and produce memory at different neural sites. Learning and Memory, 2019, 26, 151-165.	0.5	8
6	Nitric oxide and l-arginine regulate feeding in satiated rats. Appetite, 2019, 132, 44-54.	1.8	7
7	NO is required for memory formation and expression of memory, and for minor behavioral changes during training with inedible food in <i>Aplysia</i> . Learning and Memory, 2018, 25, 206-213.	0.5	4
8	Molecular correlates of separate components of training that contribute to long-term memory formation after learning that food is inedible in Aplysia. Learning and Memory, 2018, 25, 90-99.	0.5	3
9	New learning while consolidating memory during sleep is actively blocked by a protein synthesis dependent process. ELife, 2016, 5, .	2.8	9
10	Localization of molecular correlates of memory consolidation to buccal ganglia mechanoafferent neurons after learning that food is inedible in Aplysia. Learning and Memory, 2012, 19, 503-512.	0.5	10
11	Autaptic muscarinic self-excitation and nitrergic self-inhibition in neurons initiating Aplysia feeding are revealed when the neurons are cultured in isolation. Journal of Molecular Histology, 2012, 43, 431-436.	1.0	8
12	Nitric oxide as a regulator of behavior: New ideas from Aplysia feeding. Progress in Neurobiology, 2012, 97, 304-317.	2.8	40
13	Variables Controlling Entry into and Exit from the Steady-State, One of Two Modes of Feeding in Aplysia. PLoS ONE, 2012, 7, e45241.	1.1	1
14	Neurons Controlling Aplysia Feeding Inhibit Themselves by Continuous NO Production. PLoS ONE, 2011, 6, e17779.	1.1	17
15	A brief retraining regulates the persistence and lability of a long-term memory. Learning and Memory, 2010, 17, 402-406.	O.5	14
16	Nitric oxide and histamine signal attempts to swallow: A component of learning that food is inedible in <i>Aplysia</i> . Learning and Memory, 2010, 17, 50-62.	0.5	17
17	Autaptic Excitation Elicits Persistent Activity and a Plateau Potential in a Neuron of Known Behavioral Function. Current Biology, 2009, 19, 479-484.	1.8	90
18	Nitric oxide induces aspects of egg-laying behavior in Aplysia. Journal of Experimental Biology, 2008, 211, 2388-2396.	0.8	8

#	Article	IF	CITATIONS
19	Training with inedible food in Aplysia causes expression of C/EBP in the buccal but not cerebral ganglion. Learning and Memory, 2008, 15, 412-416.	0.5	22
20	Currents Contributing to Decision Making in Neurons B31/B32 of Aplysia. Journal of Neurophysiology, 2008, 99, 814-830.	0.9	21
21	Control of Feeding inAplysiaWith Ad Libitum Access to Food: Presence of Food Increases the Intervals Between Feeding Bouts. Journal of Neurophysiology, 2006, 95, 106-118.	0.9	8
22	Nitric Oxide Signals That Aplysia Have Attempted to Eat, a Necessary Component of Memory Formation After Learning That Food Is Inedible. Journal of Neurophysiology, 2006, 96, 1247-1257.	0.9	37
23	Transforming Tonic Firing Into a Rhythmic Output in the Aplysia Feeding System: Presynaptic Inhibition of a Command-Like Neuron by a CPG Element. Journal of Neurophysiology, 2005, 93, 829-842.	0.9	15
24	Circadian modulation of complex learning in diurnal and nocturnal Aplysia. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12589-12594.	3.3	73
25	Long-Term Memory Requires PolyADP-ribosylation. Science, 2004, 304, 1820-1822.	6.0	148
26	Structural and functional analysis of Aplysia attractins, a family of water-borne protein pheromones with interspecific attractiveness. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6929-6933.	3.3	53
27	Peptide and protein pheromones in molluscs. Peptides, 2004, 25, 1523-1530.	1.2	34
28	Nitric Oxide and Memory. Neuroscientist, 2004, 10, 153-162.	2.6	143
29	Nitric Oxide Is Necessary for Multiple Memory Processes after Learning That a Food Is Inedible in <i>Aplysia</i> . Journal of Neuroscience, 2002, 22, 9581-9594.	1.7	91
30	Mechanisms Underlying Fictive Feeding in <i>Aplysia</i> : Coupling Between a Large Neuron With Plateau Potentials Activity and a Spiking Neuron. Journal of Neurophysiology, 2002, 87, 2307-2323.	0.9	37
31	Separate Effects of a Classical Conditioning Procedure on Respiratory Pumping, Swimming, and Inking in <i>Aplysia fasciata</i> . Learning and Memory, 1999, 6, 21-36.	0.5	8
32	Social isolation blocks the expression of memory after training that a food is inedible in Aplysia fasciata Behavioral Neuroscience, 1998, 112, 942-951.	0.6	13
33	Multiple Memory Processes Following Training That a Food Is Inedible in <i>Aplysia</i> . Learning and Memory, 1998, 5, 204-219.	0.5	62
34	The rhinophores sense pheromones regulating multiple behaviors in Aplysia fasciata. Neuroscience Letters, 1997, 225, 113-116.	1.0	27
35	Different Roles of Neurons B63 and B34 That Are Active During the Protraction Phase of Buccal Motor Programs in <i>Aplysia californica</i> . Journal of Neurophysiology, 1997, 78, 1305-1319.	0.9	106
36	Modulation of respiratory pump rate by reproductive behaviors in freely behaving pairs of aplysia fasciata. Behavioral and Neural Biology, 1994, 61, 93-98.	2.3	7

#	Article	IF	CITATIONS
37	Learned changes in the rate of respiratory pumping in Aplysia fasciata in response to increases and decreases in seawater concentration Behavioral Neuroscience, 1994, 108, 161-170.	0.6	4
38	Separate neural pathways respond to different noxious stimuli affecting respiratory pump frequency inAplysia fasciata. Brain Research, 1993, 616, 218-229.	1.1	9
39	Learning that food is inedible in freely behaving Aplysia californica Behavioral Neuroscience, 1993, 107, 327-338.	0.6	26
40	Presence of conspecifics facilitates learning that food is inedible in Aplysia fasciata Behavioral Neuroscience, 1992, 106, 250-261.	0.6	17
41	Adaptation of Feeding Sequences in Aplysia Oculifera to Changes in the Load and Width of Food. Journal of Experimental Biology, 1992, 166, 215-235.	0.8	42
42	Effects of food and mates on time budget in Aplysia fasciata: Integration of feeding, reproduction, and locomotion. Behavioral and Neural Biology, 1991, 55, 68-85.	2.3	19
43	Daily variation of multiple behaviors in Aplysia fasciata: Integration of feeding, reproduction, and locomotion. Behavioral and Neural Biology, 1991, 55, 86-107.	2.3	21
44	Effects of conspecifics on feeding in Aplysia fasciata. Behavioral and Neural Biology, 1991, 55, 108-113.	2.3	19
45	Common regulation of feeding and mating in Aplysia fasciata: Pheromones released by mating and by egg cordons increase feeding behavior. Behavioral and Neural Biology, 1991, 56, 251-261.	2.3	28
46	Sequencing of behaviors in Aplysia fasciata: Integration of feeding, reproduction, and locomotion. Behavioral and Neural Biology, 1991, 56, 148-169.	2.3	15
47	Variables affecting long-term memory of learning that a food is inedible in Aplysia Behavioral Neuroscience, 1991, 105, 193-201.	0.6	24
48	Learned changes of respiratory pump rate in response to lowered pH in Aplysia. Behavioral and Neural Biology, 1990, 54, 218-233.	2.3	11
49	Motivational control of sexual behavior in Aplysia fasciata: sequencing and modulation by sexual deprivation and by addition of partners. Behavioral and Neural Biology, 1989, 52, 180-193.	2.3	28
50	Neuronal analysis of pharyngeal peristalsis in the gastropod Navanax in terms of identified motoneurons innervating identified muscle bands. I. Muscle band identifiability. Brain Research, 1989, 502, 258-265.	1.1	2
51	Neuronal analysis of pharyngeal peristalsis in the gastropod Navanax in terms of identified motoneurons innervating identified muscle bands. II. Radial and circumferential motor fields. Brain Research, 1989, 502, 266-279.	1.1	7
52	Relationship Between Respiratory Pumping and Oxygen Consumption in <i>Aplysia Depilans</i> and <i>Aplysia Fasciata</i> . Journal of Experimental Biology, 1989, 141, 389-405.	0.8	16
53	Parametric features of inhibition of feeding in Aplysia by associative learning, satiation, and sustained lip stimulation Behavioral Neuroscience, 1988, 102, 124-133.	0.6	36
54	Sexual behavior in Aplysia fasciata induced by homogenates of the distal large hermaphroditic duct. Neuroscience Letters, 1985, 59, 325-330.	1.0	30

#	Article	IF	CITATIONS
55	Purification and characterization of the gonad lectin of Aplysia depilans. FEBS Letters, 1985, 181, 267-270.	1.3	30
56	Pharyngeal movements during feeding sequences inNavanax inermis: a cinematographic analysis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1984, 155, 209-218.	0.7	11
57	Internal stimuli enhance feeding behavior in the mollusc Aplysia. Behavioral and Neural Biology, 1984, 41, 90-95.	2.3	27
58	Effects of food deprivation upon behavioral patterns and time budgeting of Aplysia fasciata. Behavioral and Neural Biology, 1984, 42, 127-133.	2.3	24
59	A neural pathway for learning that food is inedible in Aplysia. Brain Research, 1984, 294, 363-366.	1.1	10
60	The effects of food arousal on the latency of biting inAplysia. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1978, 123, 31-41.	0.7	114
61	The stimulus control of biting inAplysia. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1976, 108, 75-96.	0.7	117
62	Bulk as a stimulus for satiation in Aplysia. Behavioral Biology, 1975, 13, 203-209.	2.3	55
63	Localization of bulk stimuli underlying satiation inAplysia. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1975, 101, 309-328.	0.7	65