Yin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298914/publications.pdf

Version: 2024-02-01

	840776		1125743
13	1,081	11	13
papers	citations	h-index	g-index
10		1.0	
13	13	13	1751
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Applications of Nanomaterials in Asymmetric Photocatalysis: Recent Progress, Challenges, and Opportunities. Advanced Materials, 2021, 33, e2001731.	21.0	108
2	Photocatalytic Carboxylation of Phenyl Halides with <scp>CO₂</scp> by <scp>Metalâ€Organic</scp> Frameworks Materials. Chinese Journal of Chemistry, 2021, 39, 312-316.	4.9	8
3	Ceriumâ€Based Metal–Organic Frameworks with UiO Architecture for Visible Lightâ€Induced Aerobic Oxidation of Benzyl Alcohol. Solar Rrl, 2020, 4, 1900449.	5.8	43
4	Boosting CO2 Conversion with Terminal Alkynes by Molecular Architecture of Graphene Oxide-Supported Ag Nanoparticles. Matter, 2020, 3, 558-570.	10.0	42
5	A reconstructed porous copper surface promotes selectivity and efficiency toward C ₂ products by electrocatalytic CO ₂ reduction. Chemical Science, 2020, 11, 10698-10704.	7.4	55
6	Quasi-amorphous and Hierarchical Fe ₂ O ₃ Supraparticles: Active <i>T</i> ₁ -Weighted Magnetic Resonance Imaging <i>in Vivo</i> and Renal Clearance. ACS Nano, 2020, 14, 4036-4044.	14.6	47
7	Insight into atomically dispersed porous M–N–C single-site catalysts for electrochemical CO ₂ reduction. Nanoscale, 2020, 12, 16617-16626.	5.6	46
8	Reordering d Orbital Energies of Singleâ€Site Catalysts for CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2019, 58, 12711-12716.	13.8	166
9	Tuning the electronic structure of PtRu bimetallic nanoparticles for promoting the hydrogen oxidation reaction in alkaline media. Inorganic Chemistry Frontiers, 2019, 6, 2900-2905.	6.0	46
10	Poly-phenylenediamine-derived atomically dispersed Ni sites for the electroreduction of CO ₂ to CO. Inorganic Chemistry Frontiers, 2019, 6, 1729-1734.	6.0	11
11	Screening Commercial Semiconductors for Visible Light Driven Asymmetric Catalysis. Particle and Particle Systems Characterization, 2018, 35, 1700280.	2.3	11
12	Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Advanced Materials, 2018, 30, e1800702.	21.0	362
13	Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis. Science Advances, 2017, 3, e1701162.	10.3	136