Kelley Barsanti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6634-6639.	7.1	415
2	Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures. Chemical Reviews, 2015, 115, 4115-4156.	47.7	196
3	Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO ₃ Oxidation of Biogenic Hydrocarbons. Environmental Science & Technology, 2014, 48, 11944-11953.	10.0	178
4	Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 1: aldehydes and ketones. Atmospheric Environment, 2004, 38, 4371-4382.	4.1	166
5	The potential contribution of organic salts to new particle growth. Atmospheric Chemistry and Physics, 2009, 9, 2949-2957.	4.9	163
6	ldentification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry. Atmospheric Chemistry and Physics, 2015, 15, 1865-1899.	4.9	154
7	Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—Part 3: Carboxylic and dicarboxylic acids. Atmospheric Environment, 2006, 40, 6676-6686.	4.1	122
8	Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors. Atmospheric Chemistry and Physics, 2017, 17, 1471-1489.	4.9	119
9	Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—2. Dialdehydes, methylglyoxal, and diketones. Atmospheric Environment, 2005, 39, 6597-6607.	4.1	105
10	The carbon number-polarity grid: A means to manage the complexity of the mix of organic compounds when modeling atmospheric organic particulate matter. Atmospheric Environment, 2009, 43, 2829-2835.	4.1	100
11	New particle formation in the Front Range of the Colorado Rocky Mountains. Atmospheric Chemistry and Physics, 2008, 8, 1577-1590.	4.9	83
12	Speciated and total emission factors of particulate organics from burning western US wildland fuels and their dependence on combustion efficiency. Atmospheric Chemistry and Physics, 2019, 19, 1013-1026.	4.9	80
13	Formation of Low-Volatility Organic Compounds in the Atmosphere: Recent Advancements and Insights. Journal of Physical Chemistry Letters, 2017, 8, 1503-1511.	4.6	78
14	Modeling regional secondary organic aerosol using the Master Chemical Mechanism. Atmospheric Environment, 2015, 102, 52-61.	4.1	70
15	Nighttime Chemical Transformation in Biomass Burning Plumes: A Box Model Analysis Initialized with Aircraft Observations. Environmental Science & Technology, 2019, 53, 2529-2538.	10.0	68
16	Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3583-3606.	3.3	67
17	Identification of the biogenic compounds responsible for sizeâ€dependent nanoparticle growth. Geophysical Research Letters, 2012, 39, .	4.0	61
18	Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes. Atmospheric Chemistry and Physics, 2017, 17, 5459-5475	4.9	61

Kelley Barsanti

#	Article	IF	CITATIONS
19	Model for acid-base chemistry in nanoparticle growth (MABNAG). Atmospheric Chemistry and Physics, 2013, 13, 12507-12524.	4.9	53
20	Measurements of I/SVOCs in biomass-burning smoke using solid-phase extraction disks and two-dimensional gas chromatography. Atmospheric Chemistry and Physics, 2018, 18, 17801-17817.	4.9	50
21	Gas/particle partitioning of n-alkanes, PAHs and oxygenated PAHs in urban Denver. Atmospheric Environment, 2014, 95, 355-362.	4.1	44
22	Coupling hydrothermal liquefaction and membrane distillation to treat anaerobic digestate from food and dairy farm waste. Bioresource Technology, 2018, 267, 408-415.	9.6	43
23	E-Cigarette Airflow Rate Modulates Toxicant Profiles and Can Lead to Concerning Levels of Solvent Consumption. ACS Omega, 2018, 3, 30-36.	3.5	42
24	Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
25	Positive matrix factorization of PM _{2.5} – eliminating the effects of gas/particle partitioning of semivolatile organic compounds. Atmospheric Chemistry and Physics, 2013, 13, 7381-7393.	4.9	41
26	Water uptake by organic aerosol and its influence on gas/particle partitioning of secondary organic aerosol in the United States. Atmospheric Environment, 2016, 129, 142-154.	4.1	39
27	Analyzing experimental data and model parameters: implications for predictions of SOA using chemical transport models. Atmospheric Chemistry and Physics, 2013, 13, 12073-12088.	4.9	38
28	Gas/Particle Partitioning of 2-Methyltetrols and Levoglucosan at an Urban Site in Denver. Environmental Science & Technology, 2014, 48, 2835-2842.	10.0	38
29	Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site. Atmospheric Chemistry and Physics, 2016, 16, 9321-9348.	4.9	35
30	Mixing times of organic molecules within secondary organic aerosol particles: aÂglobal planetary boundary layer perspective. Atmospheric Chemistry and Physics, 2017, 17, 13037-13048.	4.9	35
31	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics, 2021, 21, 16293-16317.	4.9	34
32	Volatilizable Biogenic Organic Compounds (VBOCs) with two dimensional Gas Chromatography-Time of Flight Mass Spectrometry (GC × GC-TOFMS): sampling methods, VBOC complexity, and chromatographic retention data. Atmospheric Measurement Techniques, 2012, 5, 345-361.	3.1	31
33	Highly Speciated Measurements of Terpenoids Emitted from Laboratory and Mixed-Conifer Forest Prescribed Fires. Environmental Science & Technology, 2019, 53, 9418-9428.	10.0	31
34	Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. Environmental Science & Technology, 2021, 55, 10280-10290.	10.0	31
35	An Experimental and Modeling Study of Nanoparticle Formation and Growth from Dimethylamine and Nitric Acid. Journal of Physical Chemistry A, 2019, 123, 5640-5648.	2.5	29
36	Impact of Gas/Particle Partitioning of Semivolatile Organic Compounds on Source Apportionment with Positive Matrix Factorization. Environmental Science & Technology, 2014, 48, 9053-9060.	10.0	28

Kelley Barsanti

#	Article	IF	CITATIONS
37	Molecular view modeling of atmospheric organic particulate matter: Incorporating molecular structure and co-condensation of water. Atmospheric Environment, 2015, 122, 400-408.	4.1	27
38	Size resolved chemical composition of nanoparticles from reactions of sulfuric acid with ammonia and dimethylamine. Aerosol Science and Technology, 2018, 52, 1120-1133.	3.1	26
39	Viscosities, diffusion coefficients, and mixing times of intrinsic fluorescent organic molecules in brown limonene secondary organic aerosol and tests of the Stokes–Einstein equation. Atmospheric Chemistry and Physics, 2019, 19, 1491-1503.	4.9	24
40	Fraction of Free-Base Nicotine in Fresh Smoke Particulate Matter from the Eclipse "Cigarette―by 1H NMR Spectroscopy. Chemical Research in Toxicology, 2003, 16, 23-27.	3.3	21
41	Application of the np+mP modeling approach for simulating secondary organic particulate matter formation from α-pinene oxidation. Atmospheric Environment, 2011, 45, 6812-6819.	4.1	20
42	Sources of variance in BC mass measurements from a small marine engine: Influence of the instruments, fuels and loads. Atmospheric Environment, 2018, 182, 128-137.	4.1	20
43	Quantifying Atmospheric Parameter Ranges for Ambient Secondary Organic Aerosol Formation. ACS Earth and Space Chemistry, 2021, 5, 2380-2397.	2.7	20
44	Tobacco smoke particulate matter chemistry by NMR. Magnetic Resonance in Chemistry, 2007, 45, 167-170.	1.9	18
45	<i>Ab initio</i> metadynamics calculations of dimethylamine for probing p <i>K</i> _b variations in bulk <i>vs.</i> surface environments. Physical Chemistry Chemical Physics, 2020, 22, 26265-26277.	2.8	17
46	Considering the Air Quality Impacts of Bioenergy Crop Production: A Case Study Involving Arundo donax. Environmental Science & Technology, 2012, 46, 9777-9784.	10.0	14
47	A predictive model for salt nanoparticle formation using heterodimer stability calculations. Atmospheric Chemistry and Physics, 2021, 21, 11637-11654.	4.9	14
48	Evaluating the relationships between aromatic and ethanol levels in gasoline on secondary aerosol formation from a gasoline direct injection vehicle. Science of the Total Environment, 2020, 737, 140333.	8.0	12
49	Improving the representation of secondary organic aerosol (SOA) in the MOZART-4 global chemical transport model. Geoscientific Model Development, 2013, 6, 961-980.	3.6	11
50	Development and Evaluation of a Detailed Mechanism for Gas-Phase Atmospheric Reactions of Furans. ACS Earth and Space Chemistry, 2020, 4, 1254-1268.	2.7	10
51	The influence of terpenes on the release of volatile organic compounds and active ingredients to cannabis vaping aerosols. RSC Advances, 2021, 11, 11714-11723.	3.6	8
52	High Hydroquinone Emissions from Burning Manzanita. Environmental Science and Technology Letters, 2018, 5, 309-314.	8.7	7
53	Observations of Volatile Organic Compounds in the Los Angeles Basin during COVID-19. ACS Earth and Space Chemistry, 2021, 5, 3045-3055.	2.7	6
54	Secondary organic aerosol formation from camphene oxidation: measurements and modeling. Atmospheric Chemistry and Physics, 2022, 22, 3131-3147.	4.9	5

#	Article	IF	CITATIONS
55	Reducing the negative human-health impacts of bioenergy crop emissions through region-specific crop selection. Environmental Research Letters, 2015, 10, 054004.	5.2	3
56	Using GECKO-A to derive mechanistic understanding of secondary organic aerosol formation from the ubiquitous but understudied camphene. Atmospheric Chemistry and Physics, 2021, 21, 11467-11487.	4.9	3
57	Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles. Atmospheric Measurement Techniques, 2022, 15, 2591-2606.	3.1	2
58	Comment on "Semiempirical Model for Organic Aerosol Growth by Acid-Catalyzed Heterogeneous Reactions of Carbonyls― Environmental Science & Technology, 2005, 39, 8108-8109.	10.0	1
59	Effect of salt formation on condensation of organic compounds on atmospheric nanoparticles. , 2013, , .		0
60	Detailed Characterization of Organic Carbon from Fire: Capitalizing on Analytical Advances To Improve Atmospheric Models. ACS Symposium Series, 2018, , 349-361.	0.5	0