
Ya-Ping Hsieh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298781/publications.pdf Version: 2024-02-01

VA-DINC HEIEH

#	Article	IF	CITATIONS
1	Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons. Science, 2009, 323, 1701-1705.	6.0	655
2	Complete Corrosion Inhibition through Graphene Defect Passivation. ACS Nano, 2014, 8, 443-448.	7.3	225
3	Au–Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support. Journal of Catalysis, 2006, 237, 197-206.	3.1	132
4	Electroluminescence from ZnO/Si-Nanotips Light-Emitting Diodes. Nano Letters, 2009, 9, 1839-1843.	4.5	83
5	Raman Spectroscopy Study of Isolated Double-Walled Carbon Nanotubes with Different Metallic and Semiconducting Configurations. Nano Letters, 2008, 8, 3879-3886.	4.5	82
6	Defects in Individual Semiconducting Single Wall Carbon Nanotubes: Raman Spectroscopic and in Situ Raman Spectroelectrochemical Study. Nano Letters, 2010, 10, 4619-4626.	4.5	79
7	Stretchable organic memory: toward learnable and digitized stretchable electronic applications. NPG Asia Materials, 2014, 6, e87-e87.	3.8	74
8	Rewritable, Moldable, and Flexible Stickerâ€Type Organic Memory on Arbitrary Substrates. Advanced Functional Materials, 2014, 24, 1430-1438.	7.8	67
9	Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites. Nanotechnology, 2007, 18, 415707.	1.3	64
10	Flexible transparent electrodes made of electrochemically exfoliated graphene sheets from low-cost graphite pieces. Displays, 2013, 34, 315-319.	2.0	56
11	Transferable and Flexible Labelâ€Like Macromolecular Memory on Arbitrary Substrates with High Performance and a Facile Methodology. Advanced Materials, 2013, 25, 2733-2739.	11.1	56
12	Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters. Optics Express, 2007, 15, 9357.	1.7	50
13	Controlling the properties of graphene produced by electrochemical exfoliation. Nanotechnology, 2015, 26, 335607.	1.3	41
14	High-Throughput Graphene Synthesis in Gapless Stacks. Chemistry of Materials, 2016, 28, 40-43.	3.2	39
15	Promoter-assisted chemical vapor deposition of graphene. Carbon, 2014, 67, 417-423.	5.4	36
16	Self-powered and broadband photodetectors based on graphene/ZnO/silicon triple junctions. Applied Physics Letters, 2016, 109, .	1.5	36
17	Scalable, flexible and high resolution patterning of CVD graphene. Nanoscale, 2014, 6, 289-292.	2.8	33
18	Electromagnetic Interference Shielding by Transparent Graphene/Nickel Mesh Films. ACS Applied Nano Materials, 2020, 3, 7474-7481.	2.4	33

#	Article	IF	CITATIONS
19	A graphene-based surface plasmon sensor. Nano Research, 2012, 5, 695-702.	5.8	31
20	Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	29
21	A facile tool for the characterization of two-dimensional materials grown by chemical vapor deposition. Nano Research, 2012, 5, 504-511.	5.8	26
22	Layer Control of Tubular Graphene for Corrosion Inhibition of Nickel Wires. ACS Applied Materials & Interfaces, 2017, 9, 22911-22917.	4.0	25
23	Lateral Two-Dimensional Material Heterojunction Photodetectors with Ultrahigh Speed and Detectivity. ACS Applied Materials & amp; Interfaces, 2019, 11, 6384-6388.	4.0	25
24	Impact of growth rate on graphene lattice-defect formation within a single crystalline domain. Scientific Reports, 2018, 8, 4046.	1.6	24
25	Modelling electrical conduction in nanostructure assemblies through complex networks. Nature Materials, 2020, 19, 745-751.	13.3	23
26	Hybrid Optical/Electric Memristor for Light-Based Logic and Communication. ACS Applied Materials & Interfaces, 2019, 11, 4649-4653.	4.0	22
27	Enhancing the Photoelectrochemical Hydrogen Evolution Reaction through Nanoscrolling of Two-Dimensional Material Heterojunctions. ACS Nano, 2022, 16, 5743-5751.	7.3	21
28	Dopant morphology as the factor limiting graphene conductivity. Scientific Reports, 2015, 5, 17393.	1.6	18
29	Graphene as a diffusion barrier at the interface of Liquid–State low-melting Sn–58Bi alloy and copper foil. Applied Surface Science, 2022, 578, 152108.	3.1	18
30	Ultra-high sensitivity graphene photosensors. Applied Physics Letters, 2014, 104, 041110.	1.5	16
31	Direct growth of single-metal-atom chains. , 2022, 1, 245-253.		16
32	Enhancing Thermoelectric Properties of 2D Bi ₂ Se ₃ by 1D Texturing with Graphene. ACS Applied Energy Materials, 2019, 2, 8411-8415.	2.5	15
33	Effect of Catalyst Morphology on the Quality of CVD Grown Graphene. Journal of Nanomaterials, 2013, 2013, 1-6.	1.5	14
34	Reducing the graphene grain density in three steps. Nanotechnology, 2016, 27, 105602.	1.3	14
35	Scalable production of graphene with tunable and stable doping by electrochemical intercalation and exfoliation. Physical Chemistry Chemical Physics, 2016, 18, 339-343.	1.3	14
36	Recrystallization of copper at a solid interface for improved CVD graphene growth. RSC Advances, 2017, 7, 3736-3740.	1.7	14

#	Article	IF	CITATIONS
37	Heavy Mediator at Quantum Dot/Graphene Heterojunction for Efficient Charge Carrier Transfer: Alternative Approach for High-Performance Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019, 11, 26518-26527.	4.0	14
38	QD/2D Hybrid Nanoscrolls: A New Class of Materials for Highâ€Performance Polarized Photodetection and Ultralow Threshold Laser Action. Small, 2020, 16, e2003944.	5.2	14
39	Ferroelectric 2D ice under graphene confinement. Nature Communications, 2021, 12, 6291.	5.8	13
40	Characterizations of photoconductivity of graphene oxide thin films. AIP Advances, 2012, 2, .	0.6	12
41	Electrostatic Control over the Electrochemical Reactivity of Graphene. Chemistry of Materials, 2018, 30, 7178-7182.	3.2	12
42	Large, non-saturating magnetoresistance in single layer chemical vapor deposition graphene with an h-BN capping layer. Carbon, 2018, 136, 211-216.	5.4	12
43	Large-area few-layered graphene film determination by multispectral imaging microscopy. Nanoscale, 2015, 7, 9033-9039.	2.8	11
44	Enhancing CVD graphene's inter-grain connectivity by a graphite promoter. Nanoscale, 2015, 7, 19403-19407.	2.8	10
45	Two-Dimensional Mechano-thermoelectric Heterojunctions for Self-Powered Strain Sensors. Nano Letters, 2021, 21, 6990-6997.	4.5	10
46	Characterizing percolative materials by straining. Nanoscale, 2019, 11, 1074-1079.	2.8	9
47	Generation of Silver Metal Nanocluster Random Lasing. ACS Photonics, 2021, 8, 3051-3060.	3.2	9
48	Direct deposition of single-walled carbon nanotube thin films via electrostatic spray assisted chemical vapor deposition. Nanotechnology, 2009, 20, 065601.	1.3	8
49	Chiral angle dependence of resonance window widths in (2n+m) families of single-walled carbon nanotubes. Applied Physics Letters, 2010, 96, .	1.5	8
50	Ultrahigh mobility in polyolefin-supported graphene. Nanoscale, 2016, 8, 1327-1331.	2.8	8
51	Increasing the doping efficiency by surface energy control for ultra-transparent graphene conductors. Scientific Reports, 2017, 7, 9052.	1.6	8
52	Influence of the incorporation of metals on the optical properties of MCM-41. Journal of Luminescence, 2008, 128, 553-558.	1.5	7
53	Direct growth of ZnO nanowire arrays on UV-irradiated graphene. CrystEngComm, 2015, 17, 9097-9101.	1.3	7
54	How does graphene grow on complex 3D morphologies?. Physical Chemistry Chemical Physics, 2017, 19, 23357-23361.	1.3	6

#	Article	IF	CITATIONS
55	Nanostructure analysis of InGaN/GaN quantum wells based on semi-polar-faced GaN nanorods. Optical Materials Express, 2017, 7, 320.	1.6	6
56	Solid-diffusion-facilitated cleaning of copper foil improves the quality of CVD graphene. Scientific Reports, 2019, 9, 257.	1.6	6
57	2D Material Enabled Offsetâ€Patterning with Atomic Resolution. Advanced Functional Materials, 2020, 30, 2004370.	7.8	6
58	Size effects on phonon localization and Raman enhancement in silicon nanotips. Journal of Raman Spectroscopy, 2013, 44, 81-85.	1.2	5
59	Ad-layers enhance graphene's performance. RSC Advances, 2015, 5, 93684-93688.	1.7	5
60	Robust formation of amorphous Sb2S3 on functionalized graphene for high-performance optoelectronic devices in the cyan-gap. Scientific Reports, 2020, 10, 14873.	1.6	5
61	Ultra-thin 2D transition metal monochalcogenide crystals by planarized reactions. Npj 2D Materials and Applications, 2021, 5, .	3.9	5
62	Ultrathin graphene-based solar cells. RSC Advances, 2015, 5, 99627-99631.	1.7	4
63	Patterned liquid metal contacts for high density, stick-and-peel 2D material device arrays. Nanoscale, 2018, 10, 14510-14515.	2.8	4
64	Characterizing carrier transport in nanostructured materials by force-resolved microprobing. Scientific Reports, 2020, 10, 14177.	1.6	4
65	Neutral scatterers dominate carrier transport in CVD graphene with ionic impurities. Carbon, 2020, 165, 163-168.	5.4	4
66	Chemical vapor deposition merges MoS ₂ grains into high-quality and centimeter-scale films on Si/SiO ₂ . RSC Advances, 2022, 12, 5990-5996.	1.7	4
67	MOS photodetectors based on Au-nanorod doped graphene electrodes. Nanotechnology, 2011, 22, 305201.	1.3	3
68	Multilevel Optical Labeling by Spectral Luminescence Control in Nanodiamond Color Centers. ACS Applied Materials & Interfaces, 2020, 12, 49006-49011.	4.0	3
69	Edge-Rich Interconnected Graphene Mesh Electrode with High Electrochemical Reactivity Applicable for Glucose Detection. Nanomaterials, 2021, 11, 511.	1.9	3
70	Additive-Enhanced Exfoliation for High-Yield 2D Materials Production. Nanomaterials, 2021, 11, 601.	1.9	3
71	Electroluminescence enhancement of SiGe/Si multiple quantum wells through nanowall structures. Nanotechnology, 2008, 19, 365705.	1.3	2
72	Optical Characterization of Graphene and Its Derivatives: An Experimentalist's Perspective. , 2017, , 27-59.		2

#	Article	IF	CITATIONS
73	Edge-Trimmed Nanogaps in 2D Materials for Robust, Scalable, and Tunable Lateral Tunnel Junctions. Nanomaterials, 2021, 11, 981.	1.9	2
74	Reaction-limited graphene CVD surpasses silicon production rate. 2D Materials, 2021, 8, 035016.	2.0	2
75	Correlation of grain orientations and the thickness of gradient MoS2 films. RSC Advances, 2021, 11, 34269-34274.	1.7	2
76	Correction to Layer Control of Tubular Graphene for Corrosion Inhibition of Nickel Wires. ACS Applied Materials & Interfaces, 2017, 9, 44956-44956.	4.0	1
77	Ink-jet patterning of graphene by cap assisted barrier-guided CVD. RSC Advances, 2019, 9, 29105-29108.	1.7	1
78	Laser-Assisted 2D Material-Based Highly Responsive Flexible Photosensor. , 2020, , .		1
79	Efficient light-confinement in heterostructured transition metal dichalcogenide-based nanoscrolls for high-performance photonic devices. Journal of Materials Research, 2022, 37, 660-669.	1.2	1
80	Tuning weak localization in single-layer disordered SnSe2/graphene/h-BN field-effect device. 2D Materials, 0, , .	2.0	1
81	Influence of the Incorporation of Aluminum on the Optical Properties of MCM-41. Journal of the Korean Physical Society, 2007, 50, 1683.	0.3	0
82	Increasing the efficiency of graphene-based Schottky-barrier devices. Advanced Materials Letters, 2019, 10, 132-135.	0.3	0
83	QD Hybridized 2D Material-Based Nanoscroll: A New Paradigm for Polarized Photosensing and Ultralow Threshold Random Lasing. , 2021, , .		0