Jianan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298774/publications.pdf

Version: 2024-02-01

414414 304743 1,210 61 22 32 citations h-index g-index papers 63 63 63 1804 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Morphology library of nanosilica based on a thermally induced deformable template. Chemical Communications, 2022, 58, 443-446.	4.1	2
2	Crude glycerol and glycerol as fuels and fuel additives in combustion applications. Renewable and Sustainable Energy Reviews, 2022, 159, 112206.	16.4	29
3	Accelerated synthesis of Li(Ni0.8Co0.1Mn0.1)O2 cathode materials using flame-assisted spray pyrolysis and additives. Journal of Power Sources, 2022, 528, 231244.	7.8	8
4	Aqueous cellulose solution assisted direct exfoliation of graphite to high concentration graphene dispersion. Materials Letters, 2021, 285, 129081.	2.6	13
5	Techno-economic analysis of cathode material production using flame-assisted spray pyrolysis. Energy, 2021, 218, 119504.	8.8	23
6	Biobased Plasticizers from Tartaric Acid: Synthesis and Effect of Alkyl Chain Length on the Properties of Poly(vinyl chloride). ACS Omega, 2021, 6, 13161-13169.	3.5	19
7	Internal Microstructure Dictates Interactions of Polymer-grafted Nanoparticles in Solution. Macromolecules, 2021, 54, 7234-7243.	4.8	6
8	Poly(tannin urethane)-Stabilized Multiwalled Carbon Nanotube Aqueous Dispersion for Antistatic Coating. Industrial & Engineering Chemistry Research, 2021, 60, 12353-12361.	3.7	6
9	Sprayable, durable, and superhydrophobic coating of silica particle brushes based on octadecyl bonding and polymer grafting via surface-initiated ATRP for efficient oil/water separation. European Polymer Journal, 2021, 159, 110729.	5.4	8
10	Enhanced resistance to decay of imprinted nanopatterns in thin films by bare nanoparticles compared to polymer-grafted nanoparticles. Nanoscale Advances, 2021, 3, 5348-5354.	4.6	3
11	Vanillic Acid as a New Skeleton for Formulating a Biobased Plasticizer. ACS Sustainable Chemistry and Engineering, 2021, 9, 15322-15330.	6.7	25
12	Fabrication of robust superhydrophobic filter paper for oil/water separation based on the combined octadecanoyl chain bonding and polymer grafting via surface-initiated ATRP. Cellulose, 2020, 27, 469-480.	4.9	28
13	One-Step Production of Amine-Functionalized Hollow Mesoporous Silica Microspheres via Phase Separation-Induced Cavity in Miniemulsion System for Opaque and Matting Coating. Industrial & Engineering Chemistry Research, 2020, 59, 723-731.	3.7	12
14	High retention rate NCA cathode powders from spray drying and flame assisted spray pyrolysis using glycerol as the solvent. Powder Technology, 2020, 363, 1-6.	4.2	23
15	Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles. Renewable Energy, 2020, 149, 336-346.	8.9	73
16	A scalable approach of using biomass derived glycerol to synthesize cathode materials for lithium-ion batteries. Journal of Cleaner Production, 2020, 271, 122518.	9.3	9
17	Robust and durable polymer grafted cotton fabrics for sequential oil/water separation and heavy metal ions removal based on surface initiated ATRP. Polymer, 2020, 210, 123002.	3.8	21
18	Nanoscale Pattern Decay Monitored Line by Line via In Situ Heated Atomic Force Microscopy. ACS Applied Materials & Decay Interfaces, 2020, 12, 15943-15950.	8.0	4

#	Article	IF	Citations
19	Nano-Hydroxyapatite Particle Brushes via Direct Initiator Tethering and Surface-Initiated Atom Transfer Radical Polymerization for Dual Responsive Pickering Emulsion. Langmuir, 2020, 36, 1192-1200.	3.5	7
20	Molecular Parameters Governing the Elastic Properties of Brush Particle Films. Macromolecules, 2020, 53, 1502-1513.	4.8	28
21	Continuous purification of simulated wastewater based on rice straw composites for oil/water separation and removal of heavy metal ions. Cellulose, 2020, 27, 5223-5239.	4.9	28
22	Large scale synthesis of nitrogen-doped nanoporous carbon spheres based on miniemulsion polymerization for efficient dye removal. SN Applied Sciences, 2019, 1, 1.	2.9	1
23	Unexpectedly High Adsorption Capacity of Esterified Hydroxyapatite for Heavy Metal Removal. Langmuir, 2019, 35, 16111-16119.	3.5	26
24	Direct bromination of nano hydroxyapatite strategy towards particle brushes via surface-initiated ATRP for highly efficient heavy metal removal. Polymer, 2019, 183, 121883.	3.8	13
25	Nanoimprint Directed Assembly of Associating Polymer-Grafted Nanoparticles for Polymer Thin Films with Enhanced Stability. ACS Applied Polymer Materials, 2019, 1, 3242-3252.	4.4	9
26	Superhydrophobic/Superoleophilic Cotton for Efficient Oil–Water Separation Based on the Combined Octadecanoyl Chain Bonding and Polymer Grafting via Surface-Initiated ATRP. ACS Applied Polymer Materials, 2019, 1, 2875-2882.	4.4	37
27	Clean Poultry Energy System Design Based on Biomass Gasification Technology: Thermodynamic and Economic Analysis. Energies, 2019, 12, 4235.	3.1	3
28	ZnO/carbon hybrids derived from polymer nanocomposite precursor materials for pseudocapacitor electrodes with high cycling stability. Polymer, 2018, 137, 370-377.	3.8	29
29	Organosilica with Grafted Polyacrylonitrile Brushes for High Surface Area Nitrogen-Enriched Nanoporous Carbons. Chemistry of Materials, 2018, 30, 2208-2212.	6.7	21
30	Ag/Polystyrene Hollow Microspheres from Surface-Functional Colloidal Particles via Double In Situ Miniemulsion Polymerization. Journal of Nanoscience and Nanotechnology, 2017, 17, 3238-3241.	0.9	3
31	A Fatty Acid-Inspired Tetherable Initiator for Surface-Initiated Atom Transfer Radical Polymerization. Chemistry of Materials, 2017, 29, 4963-4969.	6.7	55
32	Thermomechanical Properties and Glass Dynamics of Polymer-Tethered Colloidal Particles and Films. Macromolecules, 2017, 50, 8658-8669.	4.8	30
33	Photocatalytic Active Mesoporous Carbon/ZnO Hybrid Materials from Block Copolymer Tethered ZnO Nanocrystals. Langmuir, 2017, 33, 12276-12284.	3.5	22
34	Individual Nanoporous Carbon Spheres with High Nitrogen Content from Polyacrylonitrile Nanoparticles with Sacrificial Protective Layers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37804-37812.	8.0	19
35	Facile Aqueous Route to Nitrogen-Doped Mesoporous Carbons. Journal of the American Chemical Society, 2017, 139, 12931-12934.	13.7	86
36	Synthesis and characterization of gibbsite nanoplatelet brushes by surface-initiated atom transfer radical polymerization. Polymer, 2017, 126, 126-132.	3.8	11

#	Article	IF	CITATIONS
37	Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends. Science Advances, 2016, 2, e1601484.	10.3	30
38	Synthesis and multi-responsiveness of poly(N-vinylcaprolactam-co-acrylic acid) core–shell microgels via miniemulsion polymerization. Polymer Chemistry, 2016, 7, 4106-4111.	3.9	10
39	Influence of Spacers in Tetherable Initiators on Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). Macromolecules, 2016, 49, 9283-9286.	4.8	21
40	Facile fabrication of poly(acrylic acid) hollow nanogels via in situ Pickering miniemulsion polymerization. Polymer Chemistry, 2015, 6, 6125-6128.	3.9	12
41	Large-scale synthesis and characterization of magnetic poly(acrylic acid) nanogels via miniemulsion polymerization. RSC Advances, 2015, 5, 58889-58894.	3.6	13
42	Preparation and Application of Functional Inorganic/Polymer Hollow MicrospheresViaDoubleIn SituMini-Emulsion Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 387-393.	2.2	1
43	Photoinduced Fe-Based Atom Transfer Radical Polymerization in the Absence of Additional Ligands, Reducing Agents, and Radical Initiators. Macromolecules, 2015, 48, 6948-6954.	4.8	98
44	Facile interfacial synthesis of silica/titania mesoporous microcapsules via in situ miniemulsification process. Micro and Nano Letters, 2015, 10, 375-377.	1.3	1
45	Facile fabrication of magnetic hybrid-shell microcapsule via miniemulsion polymerization. Materials Letters, 2014, 114, 60-62.	2.6	7
46	Raspberry-like nanocomposite microsphere via Double In situ miniemulsion polymerization using interfacial redox initiator system. Macromolecular Research, 2013, 21, 123-126.	2.4	6
47	Facile fabrication of Janus magnetic microcapsules via double in situ miniemulsion polymerization. Polymer Chemistry, 2013, 4, 1459-1466.	3.9	23
48	Preparation and Characterization of Magnetic SiO2/PSt Hollow Composite Microspheres via Miniemulsion Polymerization. Acta Chimica Sinica, 2013, 71, 392.	1.4	0
49	Facile Fabrication of Hybrid Hollow Microspheres via in Situ Pickering Miniemulsion Polymerization. Chemistry Letters, 2012, 41, 970-971.	1.3	7
50	Facile fabrication of flower-like nanocomposite microparticles via seeded miniemulsion polymerization. Polymer Chemistry, 2012, 3, 2011.	3.9	11
51	Facile fabrication of double-shelled hollow microspheres via double in situ miniemulsion polymerization. Polymer Chemistry, 2012, 3, 2720.	3.9	9
52	Facile fabrication and catalytic property of ‴flower-like' silver nanoparticles. Micro and Nano Letters, 2012, 7, 370.	1.3	4
53	Preparation of magnetic poly(vinyl alcohol) microspheres via inverse miniemulsion technique. Materials Letters, 2012, 79, 222-224.	2.6	3
54	Colloidal silver deposition onto functionalized polystyrene microspheres. Polymer Chemistry, 2011, 2, 970.	3.9	18

#	Article	IF	CITATION
55	Facile fabrication of free-standing colloidal-crystal films by interfacial self-assembly. Journal of Colloid and Interface Science, 2011, 353, 16-21.	9.4	24
56	Facile Fabrication of Inorganic/Polymer Janus Microspheres by Miniemulsion Polymerization. Chemistry Letters, 2010, 39, 206-207.	1.3	12
57	Preparation and characterization of polymer/silica nanocomposites via double <i>in situ</i> miniemulsion polymerization. Journal of Polymer Science Part A, 2010, 48, 3128-3134.	2.3	30
58	Hybrid hollow microspheres templated from double Pickering emulsions. Chemical Communications, 2010, 46, 4318.	4.1	37
59	SiO ₂ /Polymer Hybrid Hollow Microspheres via Double in Situ Miniemulsion Polymerization. Macromolecules, 2010, 43, 1188-1190.	4.8	45
60	Anionic poly (lactic acid)-polyurethane micelles as potential biodegradable drug delivery carriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 337, 200-204.	4.7	48
61	Polymer grafted gibbsite nanoplatelets via direct initiator tethering and surface-initiated atom transfer radical polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 0, , 1-7.	2.2	0