Harriet Schellekens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298606/publications.pdf

Version: 2024-02-01

185998 128067 4,157 75 28 citations h-index papers

g-index 75 75 75 5447 docs citations times ranked citing authors all docs

60

#	Article	IF	Citations
1	The microbiota–gut–brain axis in obesity. The Lancet Gastroenterology and Hepatology, 2017, 2, 747-756.	3.7	408
2	Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics, 2018, 15, 36-59.	2.1	358
3	Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 2017, 179, 223-244.	2.2	351
4	Microbiota-Gut-Brain Axis: Modulator of Host Metabolism and Appetite. Journal of Nutrition, 2017, 147, 727-745.	1.3	280
5	Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology, 2012, 221, 155-169.	1.5	231
6	Ghrelin signalling and obesity: At the interface of stress, mood and food reward., 2012, 135, 316-326.		194
7	Nutritional psychiatry: Towards improving mental health by what you eat. European Neuropsychopharmacology, 2019, 29, 1321-1332.	0.3	191
8	Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Advances in Nutrition, 2021, 12, 1239-1285.	2.9	125
9	Promiscuous Dimerization of the Growth Hormone Secretagogue Receptor (GHS-R1a) Attenuates Ghrelin-mediated Signaling. Journal of Biological Chemistry, 2013, 288, 181-191.	1.6	123
10	Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Molecular and Cellular Endocrinology, 2022, 546, 111572.	1.6	117
11	A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review. Nutritional Neuroscience, 2015, 18, 49-65.	1.5	113
12	From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation. International Journal of Molecular Sciences, 2017, 18, 273.	1.8	112
13	Lean mean fat reducing "ghrelin―machine: Hypothalamic ghrelin and ghrelin receptors as therapeutic targets in obesity. Neuropharmacology, 2010, 58, 2-16.	2.0	103
14	Mid-life microbiota crises: middle age is associated with pervasive neuroimmune alterations that are reversed by targeting the gut microbiome. Molecular Psychiatry, 2020, 25, 2567-2583.	4.1	102
15	Ghrelin's Orexigenic Effect Is Modulated via a Serotonin 2C Receptor Interaction. ACS Chemical Neuroscience, 2015, 6, 1186-1197.	1.7	98
16	Shortâ€chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB Journal, 2019, 33, 13546-13559.	0.2	93
17	Taking two to tango: a role for ghrelin receptor heterodimerization in stress and reward. Frontiers in Neuroscience, 2013, 7, 148.	1.4	74
18	Understanding neurophobia: Reasons behind impaired understanding and learning of neuroanatomy in crossâ€disciplinary healthcare students. Anatomical Sciences Education, 2018, 11, 81-93.	2.5	72

#	Article	IF	CITATIONS
19	Bifidobacterium longum counters the effects of obesity: Partial successful translation from rodent to human. EBioMedicine, 2021, 63, 103176.	2.7	64
20	Microbiotaâ€gutâ€brain axis as a regulator of reward processes. Journal of Neurochemistry, 2021, 157, 1495-1524.	2.1	60
21	The Role of Central Serotonin Neurons and 5-HT Heteroreceptor Complexes in the Pathophysiology of Depression: A Historical Perspective and Future Prospects. International Journal of Molecular Sciences, 2021, 22, 1927.	1.8	54
22	Poor Awareness of Risk Factors for Cancer in Irish Adults: Results of a Large Survey and Review of the Literature. Oncologist, 2015, 20, 372-378.	1.9	53
23	Dietary phospholipids: Role in cognitive processes across the lifespan. Neuroscience and Biobehavioral Reviews, 2020, 111, 183-193.	2.9	43
24	A ghrelin receptor and oxytocin receptor heterocomplex impairs oxytocin mediated signalling. Neuropharmacology, 2019, 152, 90-101.	2.0	37
25	Gut peptides and the microbiome: focus on ghrelin. Current Opinion in Endocrinology, Diabetes and Obesity, 2021, 28, 243-252.	1.2	36
26	Whey protein isolate counteracts the effects of a high-fat diet on energy intake and hypothalamic and adipose tissue expression of energy balance-related genes. British Journal of Nutrition, 2013, 110, 2114-2126.	1.2	34
27	Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food Chemistry, 2021, 359, 129852.	4.2	34
28	Ghrelin At the Interface of Obesity and Reward. Vitamins and Hormones, 2013, 91, 285-323.	0.7	33
29	Acute and chronic effects of dietary fatty acids on cholecystokinin expression, storage and secretion in enteroendocrine STC†cells. Molecular Nutrition and Food Research, 2010, 54, S93-S103.	1.5	32
30	Dairy-derived peptides for satiety. Journal of Functional Foods, 2020, 66, 103801.	1.6	30
31	A Microbial Drugstore for Motility. Cell Host and Microbe, 2018, 23, 691-692.	5.1	29
32	Dynamic 5-HT2C Receptor Editing in a Mouse Model of Obesity. PLoS ONE, 2012, 7, e32266.	1.1	29
33	A casein hydrolysate increases GLP-1 secretion and reduces food intake. Food Chemistry, 2018, 252, 303-310.	4.2	28
34	Maternal antibiotic administration during a critical developmental window has enduring neurobehavioural effects in offspring mice. Behavioural Brain Research, 2021, 404, 113156.	1.2	26
35	Differential functional selectivity and downstream signaling bias of ghrelin receptor antagonists and inverse agonists. FASEB Journal, 2019, 33, 518-531.	0.2	25
36	Microbiota and body weight control: Weight watchers within?. Molecular Metabolism, 2022, 57, 101427.	3.0	25

3

#	Article	IF	Citations
37	Attenuation of Oxytocin and Serotonin 2A Receptor Signaling through Novel Heteroreceptor Formation. ACS Chemical Neuroscience, 2019, 10, 3225-3240.	1.7	22
38	The effects of food components on hormonal signalling in gastrointestinal enteroendocrine cells. Food and Function, 2012, 3, 1131.	2.1	20
39	Is there altered sensitivity to ghrelin-receptor ligands in leptin-deficient mice?: importance of satiety state and time of day. Psychopharmacology, 2011, 216, 421-429.	1.5	19
40	Molecular, biochemical and behavioural evidence for a novel oxytocin receptor and serotonin 2C receptor heterocomplex. Neuropharmacology, 2021, 183, 108394.	2.0	19
41	Dietary vitamin A supplementation prevents early obesogenic diet-induced microbiota, neuronal and cognitive alterations. International Journal of Obesity, 2021, 45, 588-598.	1.6	18
42	In vitro bidirectional permeability studies identify pharmacokinetic limitations of NKCC1 inhibitor bumetanide. European Journal of Pharmacology, 2016, 770, 117-125.	1.7	17
43	Milk protein hydrolysates activate 5-HT2C serotonin receptors: influence of the starting substrate and isolation of bioactive fractions. Food and Function, 2013, 4, 728.	2.1	15
44	Milk protein-derived peptides induce 5-HT2C-mediated satiety inÂvivo. International Dairy Journal, 2014, 38, 55-64.	1.5	15
45	Compared to casein, bovine lactoferrin reduces plasma leptin and corticosterone and affects hypothalamic gene expression without altering weight gain or fat mass in high fat diet fed C57/BL6J mice. Nutrition and Metabolism, 2015, 12, 53.	1.3	15
46	Devil's Claw to Suppress Appetiteâ€"Ghrelin Receptor Modulation Potential of a Harpagophytum procumbens Root Extract. PLoS ONE, 2014, 9, e103118.	1.1	15
47	Sustained-release multiparticulates for oral delivery of a novel peptidic ghrelin agonist: Formulation design and in vitro characterization. International Journal of Pharmaceutics, 2018, 536, 63-72.	2.6	14
48	Semagacestat, a \hat{I}^3 -secretase inhibitor, activates the growth hormone secretagogue (GHS-R1a) receptor. Journal of Pharmacy and Pharmacology, 2013, 65, 528-538.	1.2	13
49	Strain differences in behaviour and immunity in aged mice: Relevance to Autism. Behavioural Brain Research, 2021, 399, 113020.	1.2	12
50	The effect of \hat{l}_{\pm} - or \hat{l}_{\pm} -casein addition to waxy maize starch on postprandial levels of glucose, insulin, and incretin hormones in pigs as a model for humans. Food and Nutrition Research, 2012, 56, 7989.	1.2	10
51	A Novel Non-Peptidic Agonist of the Ghrelin Receptor with Orexigenic Activity In vivo. Scientific Reports, 2016, 6, 36456.	1.6	10
52	Physiological Gut Oxygenation Alters GLPâ€l Secretion from the Enteroendocrine Cell Line STCâ€l. Molecular Nutrition and Food Research, 2018, 62, 1700568.	1.5	10
53	Quinolones Modulate Ghrelin Receptor Signaling: Potential for a Novel Small Molecule Scaffold in the Treatment of Cachexia. International Journal of Molecular Sciences, 2018, 19, 1605.	1.8	10
54	Differential gene expression in the mesocorticolimbic system of innately high- and low-impulsive rats. Behavioural Brain Research, 2019, 364, 193-204.	1.2	10

#	Article	IF	CITATIONS
55	Host Microbiota Regulates Central Nervous System Serotonin Receptor 2C Editing in Rodents. ACS Chemical Neuroscience, 2019, 10, 3953-3960.	1.7	8
56	Irish Cheddar cheese increases glucagon-like peptide-1 secretion in vitro but bioactivity is lost during gut transit. Food Chemistry, 2018, 265, 9-17.	4.2	7
57	Neurobiological effects of phospholipids in vitro: Relevance to stress-related disorders. Neurobiology of Stress, 2020, 13, 100252.	1.9	7
58	Aroma compound diacetyl suppresses glucagon-like peptide-1 production and secretion in STC-1 cells. Food Chemistry, 2017, 228, 35-42.	4.2	6
59	Evaluation of Neuroanatomy Web Resources for Undergraduate Education: Educators' and Students' Perspectives. Anatomical Sciences Education, 2020, 13, 237-249.	2.5	6
60	Behavioural characterization of ghrelin ligands, anamorelin and HM01: Appetite and reward-motivated effects in rodents. Neuropharmacology, 2020, 168, 108011.	2.0	6
61	Effect of gelatinisation of starch with casein proteins on incretin hormones and glucose transporters <i>iin vitro</i> . British Journal of Nutrition, 2012, 107, 155-163.	1.2	5
62	Electrophysiological approaches to unravel the neurobiological basis of appetite and satiety: use of the multielectrode array as a screening strategy. Drug Discovery Today, 2017, 22, 31-42.	3.2	5
63	A Dairy-Derived Ghrelinergic Hydrolysate Modulates Food Intake In Vivo. International Journal of Molecular Sciences, 2018, 19, 2780.	1.8	5
64	Satiating effect of a sodium caseinate hydrolysate and its fate in the upper gastrointestinal tract. Journal of Functional Foods, 2018, 49, 306-313.	1.6	5
65	Detection and Quantitative Analysis of Dynamic GPCRs Interactions Using Flow Cytometry-Based FRET. Neuromethods, 2018, , 223-238.	0.2	3
66	Detection, Analysis, and Quantification of GPCR Homo- and Heteroreceptor Complexes in Specific Neuronal Cell Populations Using the In Situ Proximity Ligation Assay. Neuromethods, 2018, , 299-315.	0.2	3
67	Blue Whiting (Micromesistius poutassou) Protein Hydrolysates Increase GLP-1 Secretion and Proglucagon Production in STC-1 Cells Whilst Maintaining Caco-2/HT29-MTX Co-Culture Integrity. Marine Drugs, 2022, 20, 112.	2.2	3
68	eNEUROANAT-CF: a Conceptual Instructional Design Framework for Neuroanatomy e-Learning Tools. Medical Science Educator, 2021, 31, 777-785.	0.7	2
69	The Ghrelin Receptor: A Novel Therapeutic Target for Obesity. Receptors, 2014, , 89-122.	0.2	2
70	Dietary Milk Phospholipids Attenuate Chronic Stressâ€Induced Changes in Behavior and Endocrine Responses across the Lifespan. Molecular Nutrition and Food Research, 2022, 66, e2100665.	1.5	2
71	Letter to the Editor Regarding Equivalent Increases in Circulating GLP-1 Following Jejunal Delivery of Intact and Hydrolysed Casein: Relevance to Satiety Induction following Bariatric Surgery. Obesity Surgery, 2017, 27, 816-817.	1.1	1
72	A phase 1, single-blind, placebo-controlled, 3-arm cross-over trial assessing the appetite enhancing effects of potentially ghrelinergic dairy-derived peptides. Proceedings of the Nutrition Society, 2020, 79, .	0.4	0

#	Article	IF	CITATIONS
73	Application in medicine: obesity and satiety control. , 2021, , 629-664.		O
74	Dimerization of Gâ€protein coupled Receptors (GPCRs) in Appetite Regulation and Food Reward. FASEB Journal, 2013, 27, 881.3.	0.2	0
75	Ghrelin rapidly elevates protein synthesis in vitro by employing the rpS6K-eEF2K-eEF2 signalling axis. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	0