List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298370/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CCND3 is indispensable for the maintenance of B-cell acute lymphoblastic leukemia. Oncogenesis, 2022, 11, 1.	4.9	7
2	An instructive role for Interleukin-7 receptor $\hat{I}\pm$ in the development of human B-cell precursor leukemia. Nature Communications, 2022, 13, 659.	12.8	12
3	SYK and ZAP70 kinases in autoimmunity and lymphoid malignancies. Cellular Signalling, 2022, 94, 110331.	3.6	10
4	Metabolic Gatekeepers of Pathological B Cell Activation. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 323-349.	22.4	10
5	PON2 subverts metabolic gatekeeper functions in B cells to promote leukemogenesis. Proceedings of the United States of America, 2021, 118, .	7.1	10
6	R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis. Molecular Cell, 2021, 81, 922-939.e9.	9.7	157
7	Topography of transcriptionally active chromatin in glioblastoma. Science Advances, 2021, 7, .	10.3	19
8	Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer. Molecular Cell, 2021, 81, 2094-2111.e9.	9.7	17
9	Metabolic determinants of B-cell selection. Biochemical Society Transactions, 2021, 49, 1467-1478.	3.4	0
10	Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia. Nature Communications, 2021, 12, 3526.	12.8	34
11	Protein Phosphatase 2A as a Therapeutic Target in Small Cell Lung Cancer. Molecular Cancer Therapeutics, 2021, 20, 1820-1835.	4.1	9
12	High-resolution characterization of gene function using single-cell CRISPR tiling screen. Nature Communications, 2021, 12, 4063.	12.8	23
13	TNK1 is a ubiquitin-binding and 14-3-3-regulated kinase that can be targeted to block tumor growth. Nature Communications, 2021, 12, 5337.	12.8	14
14	Beta-Catenin Forms Repressive Complexes with Ikzf1 and Ikzf3 to Orchestrate Tumor-Suppression in B-Cell Malignancies. Blood, 2021, 138, 29-29.	1.4	0
15	Leveraging Pathway-Interference to Overcome Drug-Resistance in Acute Lymphoblastic Leukemia. Blood, 2021, 138, 616-616.	1.4	1
16	Identification of a Conserved Intracellular Loop (CIL) Structure That Scaffolds PIP3 to Amplify Oncogenic Signaling during Malignant B-Cell Transformation. Blood, 2021, 138, 868-868.	1.4	0
17	Identification of BCL6 As Synthetic Lethality in RAS-Driven B-Cell Transformation. Blood, 2021, 138, 792-792.	1.4	0
18	Deciphering intratumoral heterogeneity using integrated clonal tracking and single-cell transcriptome analyses. Nature Communications, 2021, 12, 6522.	12.8	19

#	Article	IF	CITATIONS
19	Structural Basis of Feedback Control of Oncogenic Signaling in B-Lymphoid Malignancies. Blood, 2021, 138, 355-355.	1.4	0
20	CRISPR/Cas9-mediated gene deletion efficiently retards the progression of Philadelphia-positive acute lymphoblastic leukemia in a p210 BCR-ABL1T315I mutation mouse model. Haematologica, 2020, 105, e232-e236.	3.5	4
21	Signalling input from divergent pathways subverts BÂcell transformation. Nature, 2020, 583, 845-851.	27.8	37
22	<i>MEF2D</i> Fusions Drive Oncogenic Pre-BCR Signaling in B-ALL. Blood Cancer Discovery, 2020, 1, 18-20.	5.0	3
23	Core transcriptional regulatory circuitries in cancer. Oncogene, 2020, 39, 6633-6646.	5.9	41
24	IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in BÂcells. Nature, 2020, 588, 491-497.	27.8	57
25	Coactivation of NF-κB and Notch signaling is sufficient to induce B-cell transformation and enables B-myeloid conversion. Blood, 2020, 135, 108-120.	1.4	14
26	Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. Cancer Cell, 2020, 38, 79-96.e11.	16.8	389
27	Synergism between IL7R and CXCR4 drives BCR-ABL induced transformation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Nature Communications, 2020, 11, 3194.	12.8	13
28	Integrin α6 mediates the drug resistance of acute lymphoblastic B-cell leukemia. Blood, 2020, 136, 210-223.	1.4	31
29	IKAROS and CK2 regulate expression of BCL-XL and chemosensitivity in high-risk B-cell acute lymphoblastic leukemia. Blood, 2020, 136, 1520-1534.	1.4	28
30	Rationale for targeting BCL6 in <i>MLL</i> -rearranged acute lymphoblastic leukemia. Genes and Development, 2019, 33, 1265-1279.	5.9	17
31	Targeting PRMT1-mediated FLT3 methylation disrupts maintenance of MLL-rearranged acute lymphoblastic leukemia. Blood, 2019, 134, 1257-1268.	1.4	30
32	CAR T cells targeting BAFF-R can overcome CD19 antigen loss in B cell malignancies. Science Translational Medicine, 2019, 11, .	12.4	67
33	Chemical choreography of germinal center B-cell migration. Cell Research, 2019, 29, 514-515.	12.0	Ο
34	Metabolic gatekeepers to safeguard against autoimmunity and oncogenic B cell transformation. Nature Reviews Immunology, 2019, 19, 337-348.	22.7	37
35	Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature, 2019, 567, 414-419.	27.8	452
36	Infectious stimuli promote malignant B-cell acute lymphoblastic leukemia in the absence of AID. Nature Communications, 2019, 10, 5563.	12.8	21

#	Article	IF	CITATIONS
37	Regulation of SOX11 expression through CCND1 and STAT3 in mantle cell lymphoma. Blood, 2019, 133, 306-318.	1.4	26
38	Dynamic Assembly of a Feedback Complex to Regulate Oncogenic B-Cell Receptor-Signaling. Blood, 2019, 134, 393-393.	1.4	0
39	Targeting Unique Synthetic Lethal Interactions between PI3K and MYC in B-ALL. Blood, 2019, 134, 3785-3785.	1.4	0
40	Signaling Input from Divergent Pathways Subverts Malignant B-Cell Transformation. Blood, 2019, 134, 3944-3944.	1.4	0
41	Co-Expression of SYK and ZAP70 Subverts Negative B-Cell Selection and Enables Oncogenic Signaling in Multiple B-Cell Malignancies. Blood, 2019, 134, 295-295.	1.4	0
42	Autonomous Ca2+ Oscillations Reflect Oncogenic Signaling in B-ALL Cells. Blood, 2019, 134, 1253-1253.	1.4	1
43	lfitm3 Is Essential for PI(3,4,5)P3-Dependent B-Cell Activation and Leukemogenesis. Blood, 2019, 134, 2782-2782.	1.4	1
44	ldentification of ZNF217 As an Essential Oncogenic Gene in B-Cell Acute Lymphoblastic Leukemia By CRISPR/Cas9-Based Library Screening. Blood, 2019, 134, 1465-1465.	1.4	0
45	Rationale for Targeting BCL6 in MLL-Rearranged B-ALL. Blood, 2019, 134, 1239-1239.	1.4	0
46	Paraoxonase 2 Enables Initiation of B-ALL By Subverting Metabolic Gatekeeper Functions. Blood, 2019, 134, 746-746.	1.4	1
47	Lgr5 Functions As a Critical Negative Regulator of Wnt/β-Catenin Signaling and Is Essential for B-Lymphopoiesis and Malignant B-Cell Transformation. Blood, 2019, 134, 748-748.	1.4	0
48	Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2836-2841.	7.1	44
49	Loss of Pax5 Exploits Sca1-BCR-ABLp190 Susceptibility to Confer the Metabolic Shift Essential for pB-ALL. Cancer Research, 2018, 78, 2669-2679.	0.9	37
50	Autoimmunity checkpoints as therapeutic targets in B cell malignancies. Nature Reviews Cancer, 2018, 18, 103-116.	28.4	38
51	B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell, 2018, 173, 470-484.e18.	28.9	89
52	Portending death in germinal centers — when B cells know their time is up. Cell Research, 2018, 28, 5-6.	12.0	1
53	CAMKs support development of acute myeloid leukemia. Journal of Hematology and Oncology, 2018, 11, 30.	17.0	26
54	Simultaneous Targeting of PARP1 and RAD52 Triggers Dual Synthetic Lethality in BRCA-Deficient Tumor Cells. Cell Reports, 2018, 23, 3127-3136.	6.4	68

#	Article	IF	CITATIONS
55	Cooperation between SYK and ZAP70 Kinases As a Driver of Oncogenic BCR-Signaling in B-Cell Malignancies. Blood, 2018, 132, 3922-3922.	1.4	2
56	Lgr5 Enables Positive B-Cell Selection and Tumor-Initiation in B-Cell Malignancies. Blood, 2018, 132, 547-547.	1.4	3
57	Divergent Evolutionary Trajectories of Erk- and Stat5-Activating Lesions in Acute Lymphoblastic Leukemia. Blood, 2018, 132, 568-568.	1.4	Ο
58	IFITM3-Mediated Regulation of Cell Membrane Dynamics Is Essential for Malignant B-Cell Transformation. Blood, 2018, 132, 552-552.	1.4	2
59	Novel BAFF-R CAR T-Cell Therapy for CD19 Antigen-Loss Relapsed B Cell Tumors. Blood, 2018, 132, 1411-1411.	1.4	0
60	Autoimmunity Checkpoints As Therapeutic Targets in B-Cell Malignancies. Blood, 2018, 132, 1587-1587.	1.4	0
61	Pre-BCR Surrogate Light Chain Components VPREB1 and IGLL1 Function As Pre-BCR-Independent Tumor Suppressors in Acute Lymphoblastic Leukemia. Blood, 2018, 132, 570-570.	1.4	0
62	Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures. Molecular Systems Biology, 2017, 13, 914.	7.2	73
63	Genetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1+ pre–B ALL. Journal of Experimental Medicine, 2017, 214, 793-814.	8.5	34
64	Metabolic gatekeeper function of B-lymphoid transcription factors. Nature, 2017, 542, 479-483.	27.8	175
65	Lineage-Specific Genes Are Prominent DNA Damage Hotspots during Leukemic Transformation of B Cell Precursors. Cell Reports, 2017, 18, 1687-1698.	6.4	15
66	Infection Exposure Promotes <i>ETV6-RUNX1</i> Precursor B-cell Leukemia via Impaired H3K4 Demethylases. Cancer Research, 2017, 77, 4365-4377.	0.9	76
67	mTORC1 Inhibition Induces Resistance to Methotrexate and 6-Mercaptopurine in Ph+ and Ph-like B-ALL. Molecular Cancer Therapeutics, 2017, 16, 1942-1953.	4.1	10
68	Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. Nature Immunology, 2017, 18, 694-704.	14.5	67
69	BCL6 promotes glioma and serves as a therapeutic target. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3981-3986.	7.1	58
70	lbrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK. Blood, 2017, 129, 1155-1165.	1.4	64
71	Extrafollicular CD4+ T-B interactions are sufficient for inducing autoimmune-like chronic graft-versus-host disease. Nature Communications, 2017, 8, 978.	12.8	58
72	Valosin-Containing Protein/p97 as a Novel Therapeutic Target in Acute Lymphoblastic Leukemia. Neoplasia, 2017, 19, 750-761.	5.3	20

#	Article	IF	CITATIONS
73	Circadian clock cryptochrome proteins regulate autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12548-12553.	7.1	84
74	B-cell identity as a metabolic barrier against malignant transformation. Experimental Hematology, 2017, 53, 1-6.	0.4	11
75	Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. Journal of Clinical Investigation, 2017, 127, 2392-2406.	8.2	64
76	Autoimmunity Checkpoints As Therapeutic Targets in B- and T-Cell Malignancies. Blood, 2017, 130, 718-718.	1.4	0
77	PON2 Exemplifies a Unique Dependency of B Cell Lineage ALL Cells on Detoxifying Lactonases. Blood, 2017, 130, 882-882.	1.4	0
78	Effects of pharmacological and genetic disruption of CXCR4 chemokine receptor function in Bâ€cell acute lymphoblastic leukaemia. British Journal of Haematology, 2016, 174, 425-436.	2.5	27
79	The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice. Cancer Cell, 2016, 29, 574-586.	16.8	227
80	Normal ABL1 is a tumor suppressor and therapeutic target in human and mouse leukemias expressing oncogenic ABL1 kinases. Blood, 2016, 127, 2131-2143.	1.4	32
81	PTEN opposes negative selection and enables oncogenic transformation of pre-B cells. Nature Medicine, 2016, 22, 379-387.	30.7	94
82	mTOR Kinase Inhibitors Enhance Efficacy of TKIs in Preclinical Models of Ph-like B-ALL. Blood, 2016, 128, 2763-2763.	1.4	5
83	CD25 Enables Oncogenic BCR Signaling and Represents a Therapeutic Target in Refractory B Cell Malignancies. Blood, 2016, 128, 4088-4088.	1.4	2
84	Inhibition of IRE1α-driven pro-survival pathways is a promising therapeutic application in acute myeloid leukemia. Oncotarget, 2016, 7, 18736-18749.	1.8	71
85	Feedback Regulation of STAT5 Is Critical to Balance MYC and BCL6-Dependent Transcriptional Programs That Regulate Cell Size and Glucose Metabolism. Blood, 2016, 128, 4069-4069.	1.4	1
86	IFITM3 Is a Central Regulator of Lipid Raft Signaling and Essential for CD19 Surface Expression and PI3K Signaling in Human B Cell Malignancies. Blood, 2016, 128, 2738-2738.	1.4	0
87	Transcriptional Regulatory Landscape of TCF3-PBX1-Positive Leukemia and Novel Targeted Treatments. Blood, 2016, 128, 4077-4077.	1.4	0
88	Identification of the Energy Stress Sensor AMPK As Therapeutic Target in Acute Lymphoblastic Leukemia. Blood, 2016, 128, 2771-2771.	1.4	0
89	Transcriptional Control of Glucose and Energy Supply Prevents Oncogenic Signaling and B Cell Transformation. Blood, 2016, 128, 437-437.	1.4	0
90	PP2A Balances Glucose Metabolism and Foxo Activation to Maintain Cellular Redox Homeostasis in Acute Lymphoblastic Leukemia. Blood, 2016, 128, 1056-1056.	1.4	1

#	Article	IF	CITATIONS
91	Oncogenic Feedback Activation Between BCL6 and MLL Promotes Malignant Transformation in MLL-RearrangedAcute Lymphoblastic Leukemia. Blood, 2016, 128, 907-907.	1.4	0
92	BCL6 Is Critical to Overcome Oncogene-Induced Senescence in RAS-Mediated B Cell Transformation. Blood, 2016, 128, 438-438.	1.4	0
93	MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood, 2015, 126, 2202-2212.	1.4	88
94	Targeting casein kinase II restores Ikaros tumor suppressor activity and demonstrates therapeutic efficacy in high-risk leukemia. Blood, 2015, 126, 1813-1822.	1.4	75
95	Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nature Immunology, 2015, 16, 766-774.	14.5	163
96	Infection and the Perils of B-cell Activation. Cancer Discovery, 2015, 5, 1244-1246.	9.4	8
97	MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199. Cell Reports, 2015, 13, 2715-2727.	6.4	118
98	Self-Enforcing Feedback Activation between BCL6 and Pre-B Cell Receptor Signaling Defines a Distinct Subtype of Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 27, 409-425.	16.8	109
99	Erk Negative Feedback Control Enables Pre-B Cell Transformation and Represents a Therapeutic Target in Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 28, 114-128.	16.8	107
100	Rationale for targeting the pre–B-cell receptor signaling pathway in acute lymphoblastic leukemia. Blood, 2015, 125, 3688-3693.	1.4	38
101	Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature, 2015, 521, 357-361.	27.8	127
102	YM155 potently kills acute lymphoblastic leukemia cells through activation of the DNA damage pathway. Journal of Hematology and Oncology, 2015, 8, 39.	17.0	32
103	Identification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia. Nature Communications, 2015, 6, 6471.	12.8	41
104	Human Lymphoid Translocation Fragile Zones Are Hypomethylated and Have Accessible Chromatin. Molecular and Cellular Biology, 2015, 35, 1209-1222.	2.3	8
105	Mechanisms of preâ€Bâ€cell receptor checkpoint control and its oncogenic subversion in acute lymphoblastic leukemia. Immunological Reviews, 2015, 263, 192-209.	6.0	33
106	Circadian Clock Protein CRY Controls B-Cell Intrinsic Tolerance. Blood, 2015, 126, 1029-1029.	1.4	2
107	IFITM3 (CD225) Links the B Cell Antigen CD19 to PI3K-AKT Signaling in Human ALL Cells. Blood, 2015, 126, 1325-1325.	1.4	2
108	CD25 (IL2RA) Orchestrates Negative Feedback Control and Stabilizes Oncogenic Signaling Strength in Acute Lymphoblastic Leukemia. Blood, 2015, 126, 1434-1434.	1.4	6

#	Article	IF	CITATIONS
109	Overcoming Drug Resistance of Pre-B ALL Cells By Targeting Integrin alpha6 Associated Cell-Adhesion Mediated Drug Resistance Using a Novel Antibody, P5G10. Blood, 2015, 126, 2525-2525.	1.4	3
110	Combined Targeting of JAK2 with a Type II JAK2 Inhibitor and mTOR with a TOR Kinase Inhibitor Constitutes Synthetic Activity in JAK2-Driven Ph-like Acute Lymphoblastic Leukemia. Blood, 2015, 126, 2529-2529.	1.4	3
111	Infectious origins of childhood leukemia. Oncotarget, 2015, 6, 16798-16799.	1.8	8
112	Exposure to Inflammatory Immune Responses As Driver of Clonal Evolution in Childhood Acute Lymphoblastic Leukemia. Blood, 2015, 126, 166-166.	1.4	0
113	Targeting of Quiescent and Proliferating CML Stem Cells By DNA Repair Inhibitors. Blood, 2015, 126, 50-50.	1.4	8
114	B-Lymphoid Transcription Factors Restrict Glycolytic Energy Supply for Oncogenic Signaling. Blood, 2015, 126, 1255-1255.	1.4	0
115	Targeted Activation of B Cell Autoimmunity Checkpoints in Acute Lymphoblastic Leukemia. Blood, 2015, 126, 3716-3716.	1.4	0
116	Extrafollicular CD4+ T and B Interaction Induces Chronic Gvhd in the Absence of Germinal Center Formation. Blood, 2015, 126, 1875-1875.	1.4	0
117	Identification of BCL6 As a Therapeutic Target in RAS-Driven Acute Lymphoblastic Leukemia. Blood, 2015, 126, 556-556.	1.4	0
118	PP2A Is Required for B Cell Survival and Represents a Therapeutic Target in Acute Lymphoblastic Leukemia. Blood, 2015, 126, 902-902.	1.4	0
119	Targeting the B-cell receptor signaling pathway in B lymphoid malignancies. Current Opinion in Hematology, 2014, 21, 341-349.	2.5	33
120	BACH2–BCL6 balance regulates selection at the pre-B cell receptor checkpoint. Trends in Immunology, 2014, 35, 131-137.	6.8	30
121	RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nature Genetics, 2014, 46, 116-125.	21.4	313
122	Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2219-28.	7.1	78
123	Identification and characterization of OSTL (RNF217) encoding a RING-IBR-RING protein adjacent to a translocation breakpoint involving ETV6 in childhood ALL. Scientific Reports, 2014, 4, 6565.	3.3	13
124	BACH2 mediates negative selection and p53-dependent tumor suppression at the pre-B cell receptor checkpoint. Nature Medicine, 2013, 19, 1014-1022.	30.7	100
125	Bruton′s Tyrosine Kinase Inhibitor Ibrutinib Interferes With Constitutive and Induced Pre-B Cell Receptor Signaling In B-Cell Acute Lymphoblastic Leukemia. Blood, 2013, 122, 1399-1399. 	1.4	7
126	BCL-2-Selective BH3 Mimetic ABT-199 Is a Potent Agent For Acute Myeloid Leukemia. Blood, 2013, 122, 1456-1456.	1.4	2

#	Article	IF	CITATIONS
127	lfitm3 (CD225) Mediates CD19-Dependent Survival and Proliferation During Normal B Cell Development and In Ph+ ALL. Blood, 2013, 122, 2505-2505.	1.4	5
128	Gas7 Induces The Proliferation Of Ph+ ALL Cells and Prevents The Differentiation Of Early B Cell Progenitors Into CD25high Small Pre-B Cells. Blood, 2013, 122, 2506-2506.	1.4	1
129	Acute Lymphoblastic Leukemia Is a Bcl-2 Dependent Disease: Proteomic Profiling and Pre-Clinical Efficacy Of a Selective Bcl-2 Antagonist ABT-199. Blood, 2013, 122, 3919-3919.	1.4	2
130	Oncogene-Induced DNA Repair Defects Promote PARP1-Mediated "Dual Synthetic Lethality―To Eradicate Quiescent and Proliferating Leukemia Stem and Progenitor Cells. Blood, 2013, 122, 810-810.	1.4	2
131	Targeting Pre-B Cell Receptor and BCL6 In TCF3-PBX1 B-Lineage Acute Lymphoblastic Leukemia. Blood, 2013, 122, 349-349.	1.4	1
132	Inhibitory Receptors and Phosphatases Enable Oncogenic Tyrosine Kinase Signaling In B Cell Lineage Leukemia. Blood, 2013, 122, 229-229.	1.4	0
133	Normal ABL1 Is a Tumor Suppressor and Therapeutic Target In BCR-ABL1–positive Leukemias. Blood, 2013, 122, 1466-1466.	1.4	0
134	Identification Of FOXM1 As Therapeutic Target In BCR-ABL1 Positive Acute Lymphoblastic Leukemia. Blood, 2013, 122, 1250-1250.	1.4	0
135	The Plasma Cell Transcription Factor XBP1 is Required To Mitigate The Unfolded Protein Response In Ph+ ALL. Blood, 2013, 122, 836-836.	1.4	0
136	Identification Of BCL6 As a Therapeutic Target In MLL-Rearranged ALL. Blood, 2013, 122, 72-72.	1.4	0
137	Integrative Epigenomic Analysis Identifies Biomarkers and Therapeutic Targets in Adult B-Acute Lymphoblastic Leukemia. Cancer Discovery, 2012, 2, 1004-1023.	9.4	80
138	Targeting the UPR-Transcription Factor XBP1 to Overcome Drug-Resistance in Ph+ ALL. Blood, 2012, 120, 872-872.	1.4	1
139	SOX4 enables Oncogenic Survival Signals in Acute Lymphoblastic Leukemia. Blood, 2012, 120, 863-863.	1.4	0
140	BACH2 Is Required for Pre-B Cell Receptor Checkpoint Control and p53-Dependent Tumor Surveillance. Blood, 2012, 120, 1300-1300.	1.4	0
141	Suppressor of Cytokine Signaling (SOCS) Molecules Are Critical to Balance Oncogenic Signaling Strength in Ph+ ALL Blood, 2012, 120, 2563-2563.	1.4	0
142	Targeting BCL6-Mediated Drug-Resistance in High-Risk Childhood ALL. Blood, 2012, 120, 776-776.	1.4	0
143	Negative Feedback Signaling Enables Leukemic Transformation by Oncogenic Tyrosine Kinases. Blood, 2012, 120, 1352-1352.	1.4	1
144	BCL6 Interacting Corepressor (BCOR) Functions As Lineage-Specific Tumor Suppressor in B Lymphoid and Myeloid Leukemia. Blood, 2012, 120, 1301-1301.	1.4	2

#	Article	IF	CITATIONS
145	ITIM-Containing Inhibitory Receptors Are Required to Balance Oncogenic Signaling Strength in Ph+ ALL. Blood, 2012, 120, 291-291.	1.4	5
146	BCOR Is Involved in Myeloid Cell Growth Control by Regulating Hox Genes. Blood, 2012, 120, 3445-3445.	1.4	1
147	Lineage-Specific Functions of LKB1 in CML and B Lymphoid Blast Crisis. Blood, 2012, 120, 34-34.	1.4	0
148	Functional Modulation of VLA6 in BCR-ABL1+ Pre-B Acute Lymphoblastic Leukemia Blood, 2012, 120, 2565-2565.	1.4	0
149	Identification of FoxM1 As Therapeutic Target in TKI-Resistant Ph+ ALL. Blood, 2012, 120, 874-874.	1.4	Ο
150	Integrative Analysis of Ikaros-Dependent Changes of Transcriptional Regulation and Tyrosine Phosphorylation Events in Ph+ ALL. Blood, 2012, 120, 528-528.	1.4	17
151	Cooperation Between Aid and the Rag1/Rag2 V(D)J Recombinase Drives Clonal Evolution of Childhood Acute Lymphoblastic Leukemia. Blood, 2012, 120, 519-519.	1.4	2
152	Targeting survivin overcomes drug resistance in acute lymphoblastic leukemia. Blood, 2011, 118, 2191-2199.	1.4	102
153	BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR–ABL1 kinase inhibition. Nature, 2011, 473, 384-388.	27.8	174
154	Global Phosphoproteomics Reveals Crosstalk Between Bcr-Abl and Negative Feedback Mechanisms Controlling Src Signaling. Science Signaling, 2011, 4, ra18.	3.6	56
155	DUSP6-Mediated Negative Feedback to Oncogenic Tyrosine Kinase Signaling Prevents Excessive Accumulation of ROS and Enables Leukemia Cell Survival. Blood, 2011, 118, 1479-1479.	1.4	1
156	BCL6-Mediated Repression of p53 Is Critical for Leukemia Stem Cell Survival in Chronic Myeloid Leukemia. Blood, 2011, 118, 446-446.	1.4	4
157	Targeting Inhibitory Phosphatases in Tyrosine Kinase-Driven Leukemias. Blood, 2011, 118, 1382-1382.	1.4	0
158	Infectious Origins of Childhood Leukemia. Blood, 2011, 118, 751-751.	1.4	0
159	Mechanisms of Ikaros-Mediated Tumor Suppression. Blood, 2011, 118, 408-408.	1.4	1
160	Pre-B Cell Receptor-Mediated Activation of BCL6 Induces Pre-B Cell Quiescence Through Transcriptional Repression of MYC. Blood, 2011, 118, 1406-1406.	1.4	0
161	BACH2 Mediates Early B Cell Differentiation and Oncogene-Induced Senescence in Acute Lymphoblastic Leukemia. Blood, 2011, 118, 562-562.	1.4	0
162	Compensatory Signaling From ROR1 and the Pre-B Cell Receptor Promote Survival of t(1;19) Acute Lymphoblastic Leukemia. Blood, 2011, 118, 2466-2466.	1.4	1

#	Article	IF	CITATIONS
163	Targeting Survivin with YM155 As a Potential Therapy in Pediatric Acute Lymphoblastic Leukemia. Blood, 2011, 118, 2490-2490.	1.4	0
164	BCL6 is critical for the development of a diverse primary B cell repertoire. Journal of Experimental Medicine, 2010, 207, 1209-1221.	8.5	108
165	BCL6 Is Required for the Maintenance of Leukemia-Initiating Cells In Chronic Myeloid Leukemia. Blood, 2010, 116, 202-202.	1.4	1
166	IKAROS and BCL6 Limit Pre-B Cell Expansion and Prevent Leukemogenesis Downstream of the Pre-B Cell Receptor. Blood, 2010, 116, 146-146.	1.4	0
167	The Tumor Suppressor PTEN Is Required to Prevent Cellular Senescence and Cell Cycle Arrest In B Cell Lineage and Chronic Myeloid Leukemia. Blood, 2010, 116, 513-513.	1.4	2
168	IL7Rα Signaling Prevents Premature Expression of AID In Human Pre-B Cells: Implications for Clonal Evolution of Childhood Leukemia. Blood, 2010, 116, 26-26.	1.4	7
169	Pre-B Cell Receptor Signaling Distinguishes E2A-PBX1 From Other Subtypes of Acute Lymphoblastic Leukemia. Blood, 2010, 116, 274-274.	1.4	1
170	SYK Is a Tumor Suppressor In Pre-B Cell Acute Lymphoblastic Leukemia and Not a Therapeutic Target. Blood, 2010, 116, 4199-4199.	1.4	0
171	Mechanisms of Pre-B Cell Receptor-Inactivation In Acute Lymphoblastic Leukemia. Blood, 2010, 116, 147-147.	1.4	1
172	Pre–B cell receptor–mediated cell cycle arrest in Philadelphia chromosome–positive acute lymphoblastic leukemia requires <i>IKAROS</i> function. Journal of Experimental Medicine, 2009, 206, 1739-1753.	8.5	120
173	The B Cell Mutator AID Promotes B Lymphoid Blast Crisis and Drug Resistance in Chronic Myeloid Leukemia. Cancer Cell, 2009, 16, 232-245.	16.8	140
174	Human Chromosomal Translocations at CpG Sites and a Theoretical Basis for Their Lineage and Stage Specificity. Cell, 2008, 135, 1130-1142.	28.9	207
175	Conventional Light Chains Inhibit the Autonomous Signaling Capacity of the B Cell Receptor. Immunity, 2007, 26, 323-333.	14.3	74
176	Tracing the Pre-B to Immature B Cell Transition in Human Leukemia Cells Reveals a Coordinated Sequence of Primary and SecondaryIGKGene Rearrangement,IGKDeletion, andIGLGene Rearrangement. Journal of Immunology, 2005, 174, 367-375.	0.8	40
177	Mimicry of a constitutively active pre–B cell receptor in acute lymphoblastic leukemia cells. Journal of Experimental Medicine, 2005, 201, 1837-1852.	8.5	70
178	Deficiency of Bruton's tyrosine kinase in B cell precursor leukemia cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13266-13271.	7.1	51