
Victor Cionca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5298347/publications.pdf Version: 2024-02-01

VICTOR CIONCA

#	Article	IF	CITATIONS
1	Virtual Network Embedding for Wireless Sensor Networks Time-Efficient QoS/QoI-Aware Approach. IEEE Internet of Things Journal, 2021, 8, 916-926.	8.7	15
2	\$FREE\$ —Fine-Grained Scheduling for Reliable and Energy-Efficient Data Collection in LoRaWAN. IEEE Internet of Things Journal, 2020, 7, 669-683.	8.7	69
3	Attacking distributed software-defined networks by leveraging network state consistency. Computer Networks, 2019, 156, 9-19.	5.1	3
4	How To Conduct LoRaWAN Site Surveys. , 2019, , .		4
5	Dynamic Context for Static Context Header compression in LPWANs. , 2018, , .		13
6	Fair Adaptive Data Rate Allocation and Power Control in LoRaWAN. , 2018, , .		71
7	JudiShare: Judicious resource allocation for QoS-based services in shared wireless sensor networks. , 2018, , .		9
8	MAllEC: Fast and Optimal Scheduling of Energy Consumption for Energy Harvesting Devices. IEEE Internet of Things Journal, 2018, 5, 5132-5140.	8.7	7
9	Detecting Link Fabrication Attacks in Software-Defined Networks. , 2017, , .		20
10	LSCHC., 2017,,.		12
11	Exploring the economical benefits of virtualized wireless sensor networks. , 2017, , .		1
12	Into the SMOG: The Stepping Stone to Centralized WSN Control. , 2016, , .		5
13	Challenges in supporting diverse applications in a shared WSN: The Motley middleware. , 2016, , .		1
14	Exploiting pitfalls in software-defined networking implementation. , 2016, , .		9
15	The Presidium of Wireless Sensor Networks - A Software Defined Wireless Sensor Network Architecture. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2015, , 281-292.	0.3	6
16	Thermoelectric Energy Harvesting for Building Energy Management Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2013, 9, 232438.	2.2	65
17	Embedded fall and activity monitoring for a wearable ambient assisted living solution for older adults. , 2012, 2012, 248-51.		17
18	Design considerations of wireless monitoring networks for concentrated photovoltaic power plant applications. , 2012, , .		0

VICTOR CIONCA

#	Article	IF	CITATIONS
19	Configuration Tool for a Wireless Sensor Network Integrated Security Framework. Journal of Network and Systems Management, 2012, 20, 417-452.	4.9	13
20	MArSSeNs: A modular architecture for the security of sensor networks. , 2011, , .		1
21	Security for Wireless Sensor Networks – Configuration Aid. Lecture Notes in Electrical Engineering, 2010, , 1-24.	0.4	3
22	SHIMMER™ – A Wireless Sensor Platform for Noninvasive Biomedical Research. IEEE Sensors Journal, 2010, 10, 1527-1534.	4.7	471
23	Towards integrated security for sensor network applications. , 2010, , .		Ο
24	On the (im)possibility of denial of service attacks exploiting authentication overhead in WSNs. , 2009, ,		1
25	Setting up secure wireless sensor networks. , 2009, , .		1
26	TDMA Protocol Requirements for Wireless Sensor Networks. , 2008, , .		45
27	Learning, self-scheduling TDMA (LeSS-TDMA) for wireless sensor networks. , 2008, , .		Ο
28	Learning, self-scheduling TDMA (LeSS-TDMA) for sensor networks. , 2008, , .		0
29	A QoS mechanism for component based middleware. , 2007, , .		0
30	A Meta-Data Enhanced File System. , 2007, , .		2