
Taishi Takenobu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/529828/publications.pdf Version: 2024-02-01

TAISHI TAKENORIL

#	Article	IF	CITATIONS
1	Large-Area Synthesis of Highly Crystalline WSe ₂ Monolayers and Device Applications. ACS Nano, 2014, 8, 923-930.	7.3	885
2	Highly Flexible MoS ₂ Thin-Film Transistors with Ion Gel Dielectrics. Nano Letters, 2012, 12, 4013-4017.	4.5	746
3	Monolayer MoSe ₂ Grown by Chemical Vapor Deposition for Fast Photodetection. ACS Nano, 2014, 8, 8582-8590.	7.3	515
4	High Current Density in Light-Emitting Transistors of Organic Single Crystals. Physical Review Letters, 2008, 100, 066601.	2.9	216
5	Highly Efficient and Stable Perovskite Solar Cells by Interfacial Engineering Using Solution-Processed Polymer Layer. Journal of Physical Chemistry C, 2017, 121, 1562-1568.	1.5	166
6	2D Materials for Largeâ€Area Flexible Thermoelectric Devices. Advanced Energy Materials, 2020, 10, 1902842.	10.2	143
7	Hole mobility enhancement and <i>p</i> -doping in monolayer WSe ₂ by gold decoration. 2D Materials, 2014, 1, 034001.	2.0	134
8	Organic single-crystal light-emitting field-effect transistors. Journal of Materials Chemistry C, 2014, 2, 965-980.	2.7	130
9	Highly Flexible and Highâ€Performance Complementary Inverters of Largeâ€Area Transition Metal Dichalcogenide Monolayers. Advanced Materials, 2016, 28, 4111-4119.	11.1	112
10	Highly Fluorescent [7]Carbohelicene Fused by Asymmetric 1,2-Dialkyl-Substituted Quinoxaline for Circularly Polarized Luminescence and Electroluminescence. Journal of Physical Chemistry C, 2015, 119, 13937-13947.	1.5	101
11	Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. Applied Physics Letters, 2013, 103, .	1.5	96
12	The pursuit of electrically-driven organic semiconductor lasers. Journal of Materials Chemistry C, 2014, 2, 2827.	2.7	87
13	Synthetic Control of the Excitedâ€State Dynamics and Circularly Polarized Luminescence of Fluorescent "Push–Pull―Tetrathia[9]helicenes. Chemistry - A European Journal, 2016, 22, 4263-4273.	1.7	83
14	Ambipolar Organic Singleâ€Crystal Transistors Based on Ion Gels. Advanced Materials, 2012, 24, 4392-4397.	11.1	82
15	Synthesis of Largeâ€Area InSe Monolayers by Chemical Vapor Deposition. Small, 2018, 14, e1802351.	5.2	81
16	Fluorescent Ferroelectrics of Hydrogen-Bonded Pyrene Derivatives. Journal of Physical Chemistry Letters, 2015, 6, 1813-1818.	2.1	77
17	Monolayer Transition Metal Dichalcogenides as Light Sources. Advanced Materials, 2018, 30, e1707627.	11.1	76
18	Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers. Physical Review B, 2016, 94, .	1.1	71

#	Article	IF	CITATIONS
19	Charge transport in ion-gated mono-, bi- and trilayer MoS2 field effect transistors. Scientific Reports, 2014, 4, 7293.	1.6	64
20	Synthetic Control of Photophysical Process and Circularly Polarized Luminescence of [5]Carbohelicene Derivatives Substituted by Maleimide Units. Journal of Physical Chemistry C, 2016, 120, 7860-7869.	1.5	63
21	Thermoelectric properties of a semicrystalline polymer doped beyond the insulator-to-metal transition by electrolyte gating. Science Advances, 2020, 6, eaay8065.	4.7	59
22	Flexible and stretchable thin-film transistors based on molybdenum disulphide. Physical Chemistry Chemical Physics, 2014, 16, 14996.	1.3	56
23	Controlled Excited-State Dynamics and Enhanced Fluorescence Property of Tetrasulfone[9]helicene by a Simple Synthetic Process. Journal of Physical Chemistry C, 2016, 120, 7421-7427.	1.5	55
24	High current densities in a highly photoluminescent organic single-crystal light-emitting transistor. Applied Physics Letters, 2010, 97, .	1.5	54
25	Green light emission from the edges of organic single-crystal transistors. Applied Physics Letters, 2010, 97, 173301.	1.5	51
26	Selfâ€Aligned and Scalable Growth of Monolayer WSe ₂ –MoS ₂ Lateral Heterojunctions. Advanced Functional Materials, 2018, 28, 1706860.	7.8	48
27	Thermoelectric Detection of Multiâ€Subband Density of States in Semiconducting and Metallic Singleâ€Walled Carbon Nanotubes. Small, 2016, 12, 3388-3392.	5.2	45
28	Inkjet printing of single-walled carbon nanotube thin-film transistors patterned by surface modification. Applied Physics Letters, 2011, 99, .	1.5	43
29	An Ionic Liquid That Dissolves Semiconducting Polymers: A Promising Electrolyte for Bright, Efficient, and Stable Light-Emitting Electrochemical Cells. Chemistry of Materials, 2017, 29, 6122-6129.	3.2	42
30	Continuous Bandâ€Filling Control and Oneâ€Dimensional Transport in Metallic and Semiconducting Carbon Nanotube Tangled Films. Advanced Functional Materials, 2014, 24, 3305-3311.	7.8	41
31	Protonation-induced red-coloured circularly polarized luminescence of [5]carbohelicene fused by benzimidazole. Organic and Biomolecular Chemistry, 2016, 14, 6738-6743.	1.5	39
32	Enhancement of luminescence intensity in TMPY/perylene co-single crystals. Journal of Materials Chemistry, 2011, 21, 17662.	6.7	38
33	Effect of postannealing on the performance of pentacene single-crystal ambipolar transistors. Applied Physics Letters, 2008, 93, 073301.	1.5	37
34	Electron–hole doping asymmetry of Fermi surface reconstructed in a simple Mott insulator. Nature Communications, 2016, 7, 12356.	5.8	37
35	A Versatile and Simple Approach to Generate Light Emission in Semiconductors Mediated by Electric Double Layers. Advanced Materials, 2017, 29, 1606918.	11.1	37
36	Metalâ€Guided Selective Growth of 2D Materials: Demonstration of a Bottomâ€Up CMOS Inverter. Advanced Materials, 2019, 31, e1900861.	11.1	36

#	Article	IF	CITATIONS
37	High Current Injection into Dynamic p–n Homojunction in Polymer Lightâ€Emitting Electrochemical Cells. Advanced Materials, 2017, 29, 1606392.	11.1	35
38	Ultrafast photoinduced electron transfer in face-to-face charge-transfer ï€-complexes of planar porphyrins and hexaazatriphenylene derivatives. Chemical Science, 2015, 6, 1498-1509.	3.7	33
39	Recent Progress on Lightâ€Emitting Electrochemical Cells with Nonpolymeric Materials. Advanced Functional Materials, 2020, 30, 1908641.	7.8	33
40	Optically pumped amplified spontaneous emission in an ionic liquid-based polymer light-emitting electrochemical cell. Applied Physics Letters, 2012, 100, 263301.	1.5	32
41	Giant power factors in p- and n-type large-area graphene films on a flexible plastic substrate. Npj 2D Materials and Applications, 2019, 3, .	3.9	31
42	Electron-Transfer Reduction Properties and Excited-State Dynamics of Benzo[<i>ghi</i>]peryleneimide and Coroneneimide Derivatives. Journal of Physical Chemistry C, 2014, 118, 7710-7720.	1.5	30
43	Inkjet printing of aligned single-walled carbon-nanotube thin films. Applied Physics Letters, 2013, 102, .	1.5	29
44	Electron spin resonance observation of charge carrier concentration in organic field-effect transistors during device operation. Physical Review B, 2013, 87, .	1.1	28
45	Ambipolar light-emitting organic single-crystal transistors with a grating resonator. Scientific Reports, 2015, 5, 10221.	1.6	26
46	Characterization of New Rubrene Analogues with Heteroaryl Substituents. Crystal Growth and Design, 2015, 15, 442-448.	1.4	26
47	Microscopic observation of efficient charge transport processes across domain boundaries in donor-acceptor-type conjugated polymers. Communications Physics, 2019, 2, .	2.0	24
48	Formation of environmentally stable hole-doped graphene films with instantaneous and high-density carrier doping via a boron-based oxidant. Npj 2D Materials and Applications, 2019, 3, .	3.9	21
49	Two-dimensional magnetic interactions and magnetism of high-density charges in a polymer transistor. Applied Physics Letters, 2013, 102, .	1.5	20
50	Controllable Electronic Structures and Photoinduced Processes of Bayâ€Linked Perylenediimide Dimers and a Ferroceneâ€Linked Triad. Chemistry - A European Journal, 2016, 22, 9631-9641.	1.7	20
51	Two-dimensional ground-state mapping of a Mott-Hubbard system in a flexible field-effect device. Science Advances, 2019, 5, eaav7282.	4.7	20
52	Triethylene Glycol Substituted Diketopyrrolopyrrole―and Isoindigoâ€Dye Based Donor–Acceptor Copolymers for Organic Lightâ€Emitting Electrochemical Cells and Transistors. Advanced Electronic Materials, 2020, 6, 1901414.	2.6	20
53	Extraction of the contact resistance from the saturation region of rubrene single-crystal transistors. Applied Physics Letters, 2011, 99, 233301.	1.5	19
54	An ester-substituted polyfluorene derivative for light-emitting electrochemical cells: bright blue emission and its application in a host–guest system. Materials Chemistry Frontiers, 2018, 2, 952-958.	3.2	19

#	Article	IF	CITATIONS
55	Wafer-Scale Growth of One-Dimensional Transition-Metal Telluride Nanowires. Nano Letters, 2021, 21, 243-249.	4.5	18
56	Roomâ€Temperature Chiral Lightâ€Emitting Diode Based on Strained Monolayer Semiconductors. Advanced Materials, 2021, 33, e2100601.	11.1	16
57	Simultaneous enhancement of conductivity and Seebeck coefficient in an organic Mott transistor. Applied Physics Letters, 2016, 109, .	1.5	15
58	Photodetection in p–n junctions formed by electrolyte-gated transistors of two-dimensional crystals. Applied Physics Letters, 2016, 109, .	1.5	15
59	Control of the electrochemical and photophysical properties of N-substituted benzo[ghi]perylene derivatives. Materials Chemistry Frontiers, 2017, 1, 2299-2308.	3.2	14
60	Direct observation of electrically induced Pauli paramagnetism in single-layer graphene using ESR spectroscopy. Scientific Reports, 2016, 6, 34966.	1.6	12
61	Air-stable and efficient electron doping of monolayer MoS ₂ by salt–crown ether treatment. Nanoscale, 2021, 13, 8784-8789.	2.8	12
62	Highly Efficient Microscopic Charge Transport within Crystalline Domains in a Furanâ€Flanked Diketopyrrolopyrroleâ€Based Conjugated Copolymer. Advanced Functional Materials, 2020, 30, 2000389.	7.8	11
63	Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant. Japanese Journal of Applied Physics, 2018, 57, 02CB15.	0.8	9
64	Exciton Polarization and Renormalization Effect for Optical Modulation in Monolayer Semiconductors. ACS Nano, 2019, 13, 9218-9226.	7.3	9
65	CVD growth of large-area InS atomic layers and device applications. Nanoscale, 2020, 12, 9366-9374.	2.8	9
66	Light emission from organic single crystals operated by electrolyte doping. Japanese Journal of Applied Physics, 2018, 57, 03EF02.	0.8	8
67	Spatial Control of Dynamic <i>p–i–n</i> Junctions in Transition Metal Dichalcogenide Light-Emitting Devices. ACS Nano, 2021, 15, 12911-12921.	7.3	8
68	Nanowire-to-Nanoribbon Conversion in Transition-Metal Chalcogenides: Implications for One-Dimensional Electronics and Optoelectronics. ACS Applied Nano Materials, 2022, 5, 1775-1782.	2.4	7
69	Three-dimensional networks of superconducting NbSe2 flakes with nearly isotropic large upper critical field. Npj 2D Materials and Applications, 2021, 5, .	3.9	6
70	Charge transport and thermoelectric conversion in solution-processed semicrystalline polymer films under electrochemical doping. Communications Physics, 2021, 4, .	2.0	6
71	Electrical investigation of the interface band structure in rubrene single-crystal/nickel junction. Applied Physics Letters, 2011, 99, 043505.	1.5	5
72	Realization of ohmic-like contact between ferromagnet and rubrene single crystal. Applied Physics Letters, 2012, 101, 073501.	1.5	5

#	Article	IF	CITATIONS
73	Non-Fermi-liquid behavior and doping asymmetry in an organic Mott insulator interface. Physical Review B, 2019, 100, .	1.1	5
74	Strategy for improved frequency response of electric double-layer capacitors. Applied Physics Letters, 2015, 107, .	1.5	4
75	Charge and thermoelectric transport mechanism in donor-acceptor copolymer films. Physical Review Research, 2020, 2, .	1.3	4
76	Formation of a Two-Dimensional Electronic System in Laterally Assembled WTe Nanowires. ACS Applied Nano Materials, 2022, 5, 6277-6284.	2.4	4
77	Microscopic observation of highly mobile charge carriers in organic transistors of semicrystalline conducting polymers. Japanese Journal of Applied Physics, 2018, 57, 02CA04.	0.8	3
78	GaN light-emitting device based on ionic liquid electrolyte. Japanese Journal of Applied Physics, 2018, 57, 06HE05.	0.8	3
79	One-dimensionality of thermoelectric properties of semiconducting nanomaterials. Physical Review Materials, 2021, 5, .	0.9	3
80	Electric Double Layer Doping of Charge-Ordered Insulators α-(BEDT-TTF)2I3 and α-(BETS)2I3. Crystals, 2021, 11, 791.	1.0	3
81	Electrical transport properties in a single-walled carbon nanotube network. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 183-186.	0.8	2
82	Structure and thermoelectric properties of electrochemically doped polythiophene thin films: Effect of side chain density. Applied Physics Letters, 2021, 119, .	1.5	2
83	Metallic Conduction and Carrier Localization in Two-Dimensional BEDO-TTF Charge-Transfer Solid Crystals. Crystals, 2022, 12, 23.	1.0	2
84	Semiconductors: Ambipolar Organic Single-Crystal Transistors Based on Ion Gels (Adv. Mater. 32/2012). Advanced Materials, 2012, 24, 4463-4463.	11.1	1
85	Polarized emission from light-emitting electrochemical cells using uniaxially oriented polymer thin films of poly(9,9-dioctylfluorene-co-bithiophene). Japanese Journal of Applied Physics, 2018, 57, 03EF01.	0.8	1
86	Electrolyteâ€Gatingâ€Induced Metalâ€Like Conduction in Nonstoichiometric Organic Crystalline Semiconductors under Simultaneous Bandwidth Control. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900162.	1.2	1
87	2D Materials: Metalâ€Guided Selective Growth of 2D Materials: Demonstration of a Bottomâ€Up CMOS Inverter (Adv. Mater. 18/2019). Advanced Materials, 2019, 31, 1970132.	11.1	1
88	A versatile structure of light-emitting electrochemical cells for printed electronics. Applied Physics Express, 2020, 13, 084002.	1.1	1
89	Ultrafast Singlet Fission and Efficient Carrier Transport in a Lamellar Assembly of Bis[(trialkoxyphenyl)ethynyl]pentacene. Journal of Physical Chemistry C, 0, , .	1.5	1

90 Novel functional devices of transition metal dichalcogenide monolayers. , 2014, , .

0

#	Article	IF	Citations
91	Novel Functional Devices of Single-walled Carbon Nanotubes. Molecular Science, 2015, 9, A0080.	0.2	0
92	Nonpolymeric LECs: Recent Progress on Lightâ€Emitting Electrochemical Cells with Nonpolymeric Materials (Adv. Funct. Mater. 33/2020). Advanced Functional Materials, 2020, 30, 2070223.	7.8	0
93	Roomâ€īemperature Chiral Lightâ€Emitting Diode Based on Strained Monolayer Semiconductors (Adv.) Tj ETQq1	1 0.78432 11.1	l4 rgBT /Ove
94	High Current Density Injection into Polymer Light-Emitting Electrochemical Cells. The Review of Laser Engineering, 2018, 46, 10.	0.0	0
95	Novel functional devices of transition metal dichalcogenide monolayers. , 2022, , .		0