Cheng Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5297944/cheng-wang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

108 65 4,515 35 h-index g-index citations papers 6.05 5,776 115 7.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
108	A Pyrene-Based, Fluorescent Three-Dimensional Covalent Organic Framework. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3302-5	16.4	448
107	Designed Synthesis of a 2D Porphyrin-Based sp Carbon-Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6430-6434	16.4	267
106	3D Porphyrin-Based Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8705-8709	16.4	246
105	A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7416-7421	13	205
104	An AlEgen-based 3D covalent organic framework for white light-emitting diodes. <i>Nature Communications</i> , 2018 , 9, 5234	17.4	182
103	Covalent-organic frameworks: potential host materials for sulfur impregnation in lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8854-8858	13	177
102	Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. <i>Science Advances</i> , 2016 , 2, e1600480	14.3	150
101	Polymer memristor for information storage and neuromorphic applications. <i>Materials Horizons</i> , 2014 , 1, 489	14.4	146
100	Organic Biomimicking Memristor for Information Storage and Processing Applications. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500298	6.4	130
99	Oriented Covalent Organic Framework Film on Graphene for Robust Ambipolar Vertical Organic Field-Effect Transistor. <i>Chemistry of Materials</i> , 2017 , 29, 4367-4374	9.6	113
98	2D and 3D Porphyrinic Covalent Organic Frameworks: The Influence of Dimensionality on Functionality. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 3624-3629	16.4	102
97	Impregnation of sulfur into a 2D pyrene-based covalent organic framework for high-rate lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 17186-17191	13	97
96	2D sp Carbon-Conjugated Porphyrin Covalent Organic Framework for Cooperative Photocatalysis with TEMPO. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9088-9093	16.4	92
95	Tuning the Photoinduced Electron Transfer in a Zr-MOF: Toward Solid-State Fluorescent Molecular Switch and Turn-On Sensor. <i>Advanced Materials</i> , 2018 , 30, e1802329	24	81
94	Fabrication of a graphene/C nanohybrid via Eyclodextrin host-guest chemistry for photodynamic and photothermal therapy. <i>Nanoscale</i> , 2017 , 9, 8825-8833	7.7	78
93	Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. <i>Nature Communications</i> , 2021 , 12, 1354	17.4	78
92	Isostructural Three-Dimensional Covalent Organic Frameworks. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9770-9775	16.4	72

(2016-2018)

Nanometric Ni5P4 Clusters Nested on NiCo2O4 for Efficient Hydrogen Production via Alkaline Water Electrolysis. <i>Advanced Energy Materials</i> , 2018 , 8, 1801690	21.8	71
Conjugated polymer-grafted reduced graphene oxide for nonvolatile rewritable memory. <i>Chemistry - A European Journal</i> , 2011 , 17, 13646-52	4.8	67
Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples. <i>Journal of Chromatography A</i> , 2016 , 1441, 8-15	4.5	65
Reversible Tuning Hydroquinone/Quinone Reaction in Metal©rganic Framework: Immobilized Molecular Switches in Solid State. <i>Chemistry of Materials</i> , 2015 , 27, 6426-6431	9.6	61
Magnetic covalent triazine framework for rapid extraction of phthalate esters in plastic packaging materials followed by gas chromatography-flame ionization detection. <i>Journal of Chromatography A</i> , 2017 , 1525, 32-41	4.5	58
Fabrication of Highly Photoluminescent TiO2/PPV Hybrid Nanoparticle-Polymer Fibers by Electrospinning. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 205-209	4.8	56
Thermally-stable resistive switching with a large ON/OFF ratio achieved in poly(triphenylamine). <i>Chemical Communications</i> , 2014 , 50, 11856-8	5.8	55
Side-group chemical gating via reversible optical and electric control in a single molecule transistor. <i>Nature Communications</i> , 2019 , 10, 1450	17.4	53
Tailored covalent organic frameworks by post-synthetic modification. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 113-127	7.8	52
Three-Dimensional Covalent Organic Frameworks: From Topology Design to Applications. <i>Accounts of Chemical Research</i> , 2020 , 53, 2225-2234	24.3	52
Syntheses Study of Keggin POM Supporting MOFs System. Crystal Growth and Design, 2012, 12, 2242-2	2 5 0;	51
Synthesis of graphene and related two-dimensional materials for bioelectronics devices. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 28-42	11.8	46
Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal-Organic Framework via a "Click" Reaction. <i>Inorganic Chemistry</i> , 2015 , 54, 5139-41	5.1	45
Twist Building Blocks from Planar to Tetrahedral for the Synthesis of Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3718-3723	16.4	44
Assembly of the first polyoxometalate-based hybrid with [ring+helix] channels and photocatalytic activity. <i>CrystEngComm</i> , 2013 , 15, 10584	3.3	42
Tuning the bandgaps of polyazomethines containing triphenylamine by different linkage sites of dialdhyde monomers. <i>Electrochimica Acta</i> , 2012 , 76, 229-241	6.7	41
Structural effect on the resistive switching behavior of triphenylamine-based poly(azomethine)s. <i>Chemical Communications</i> , 2014 , 50, 11496-9	5.8	39
An organic terpyridyl-iron polymer based memristor for synaptic plasticity and learning behavior simulation. <i>RSC Advances</i> , 2016 , 6, 25179-25184	3.7	37
	Vater Electrolysis. Advanced Energy Materials, 2018, 8, 1801690 Conjugated polymer-grafted reduced graphene oxide for nonvolatile rewritable memory. Chemistry - A European Journal, 2011, 17, 13646-52 Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples. Journal of Chromatography A, 2016, 1441, 8-15 Reversible Tuning Hydroquinone/Quinone Reaction in Metal@rganic Framework: Immobilized Molecular Switches in Solid State. Chemistry of Materials, 2015, 27, 6426-6431 Magnetic covalent triazine framework for rapid extraction of phthalate esters in plastic packaging materials followed by gas chromatography-flame ionization detection. Journal of Chromatography A, 2017, 1525, 32-41 Fabrication of Highly Photoluminescent TiO2/PPV Hybrid Nanoparticle-Polymer Fibers by Electrospinning. Macromolecular Rapid Communications, 2007, 28, 205-209 Thermally-stable resistive switching with a large ON/OFF ratio achieved in poly(triphenylamine). Chemical Communications, 2014, 50, 11856-8 Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nature Communications, 2019, 10, 1450 Tailored covalent organic frameworks by post-synthetic modification. Materials Chemistry Frontiers, 2020, 4, 113-127 Three-Dimensional Covalent Organic Frameworks: From Topology Design to Applications. Accounts of Chemical Research, 2020, 53, 2225-2234 Syntheses Study of Keggin POM Supporting MOFs System. Crystal Growth and Design, 2012, 12, 2242-2 Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosensors and Bioelectronics, 2017, 89, 28-42 Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal-Organic Framework via a "Click" Reaction. Inorganic Chemistry, 2015, 54, 5139-41 Twist Building Blocks from Planar to Tetrahedral for the Synthesis of Covalent Organic Frameworks. Journal of t	Conjugated polymer-grafted reduced graphene oxide for nonvolatile rewritable memory. Chemistry A European Journal, 2011, 17, 13646-52 Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples. Journal of Chromatography A, 2016, 1441, 8-15 Reversible Tuning Hydroquinone/Quinone Reaction in MetalDrganic Framework: Immobilized Molecular Switches in Solid State. Chemistry of Materials, 2015, 27, 6426-6431 Magnetic covalent triazine framework for rapid extraction of phthalate esters in plastic packaging materials followed by gas chromatography-flame ionization detection. Journal of Chromatography A, 2017, 1525, 32-41 Fabrication of Highly Photoluminescent TiO2/PPV Hybrid Nanoparticle-Polymer Fibers by Electrospinning. Macromolecular Rapid Communications, 2007, 28, 205-209 Thermally-stable resistive switching with a large ON/OFF ratio achieved in poly(triphenylamine). Chemical Communications, 2014, 50, 11856-8 Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nature Communications, 2019, 10, 1450 7.8 Tailored covalent organic Frameworks by post-synthetic modification. Materials Chemistry Frontiers, 2020, 4, 113-127 Three-Dimensional Covalent Organic Frameworks: From Topology Design to Applications. Accounts of Chemical Research, 2020, 53, 2225-2234 Syntheses Study of Keggin POM Supporting MOFs System. Crystal Growth and Design, 2012, 12, 2242-2258 Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosensors and Bioelectronics, 2017, 89, 28-42 Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal-Organic Framework via a "Click" Reaction. Inorganic Chemistry, 2015, 54, 5139-41 Twist Building Blocks from Planar to Tetrahedral for the Synthesis of Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 3718-3723 Tuning

73	Electrical Bistability and WORM Memory Effects in Donor Acceptor Polymers Based on Poly (N-vinylcarbazole). <i>ChemPlusChem</i> , 2012 , 77, 74-81	2.8	35
72	A Crystalline Three-Dimensional Covalent Organic Framework with Flexible Building Blocks. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2123-2129	16.4	33
71	A solution-processable polymer-grafted graphene oxide derivative for nonvolatile rewritable memory. <i>Polymer Chemistry</i> , 2014 , 5, 2010-2017	4.9	32
70	Substrate Orientation Effect in the On-Surface Synthesis of Tetrathiafulvalene-Integrated Single-Layer Covalent Organic Frameworks. <i>Langmuir</i> , 2015 , 31, 11755-9	4	31
69	Microfluidic fabrication of magnetic porous multi-walled carbon nanotube beads for oil and organic solvent adsorption. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10479-10485	13	30
68	POM species, temperature and counterions modulated the various dimensionalities of POM-based metal-organic frameworks. <i>Dalton Transactions</i> , 2016 , 45, 1657-67	4.3	30
67	Syntheses of POM-templated MOFs containing the isomeric pyridyltetrazole. <i>CrystEngComm</i> , 2012 , 14, 5053	3.3	30
66	Postsynthetic Modification of Metal-Organic Frameworks through Click Chemistry. <i>Chinese Journal of Chemistry</i> , 2016 , 34, 186-190	4.9	28
65	Synthesis and nonvolatile memristive switching effect of a donor acceptor structured oligomer. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 664-673	7.1	26
64	Dithienopyrrole-/Benzodithiophene-Based DonorAcceptor Polymers for Memristor. <i>ChemPlusChem</i> , 2014 , 79, 1263-1270	2.8	26
63	Microfluidic generation of graphene beads for supercapacitor electrode materials. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22088-22093	13	25
62	A virus-induced kidney disease model based on organ-on-a-chip: Pathogenesis exploration of virus-related renal dysfunctions. <i>Biomaterials</i> , 2019 , 219, 119367	15.6	25
61	A solar ultraviolet sensor based on fluorescent polyoxometalate and viologen. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 9383-9388	7.1	24
60	Mass Ratio of CdS/Poly(ethylene oxide) Controlled Photoluminescence of One-Dimensional Hybrid Fibers by Electrospinning. <i>Macromolecular Materials and Engineering</i> , 2007 , 292, 949-955	3.9	24
59	YolkBhell nanorattles encapsulating a movable Au nanocore in electroactive polyaniline shells for flexible memory device. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5189	7.1	23
58	Tuning the Topology of Three-Dimensional Covalent Organic Frameworks via Steric Control: From to Unprecedented. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7279-7284	16.4	23
57	Construction of POMOFs with different degrees of interpenetration and the same topology. <i>CrystEngComm</i> , 2015 , 17, 633-641	3.3	22
56	Engineering a Zirconium MOF through Tandem "Click" Reactions: A General Strategy for Quantitative Loading of Bifunctional Groups on the Pore Surface. <i>Inorganic Chemistry</i> , 2018 , 57, 2288-2	22 9 5	22

(2019-2014)

A series of lanthanide(III) complexes constructed from Schiff base and Ediketonate ligands. CrystEngComm, 2014 , 16, 10460-10468	3.3	22	
Redox-triggered switching in three-dimensional covalent organic frameworks. <i>Nature Communications</i> , 2020 , 11, 4919	17.4	21	
Resistance-Switchable Graphene Oxide Polymer Nanocomposites for Molecular Electronics. <i>ChemElectroChem</i> , 2014 , 1, 514-519	4.3	19	
A 2D porphyrin-based covalent organic framework with TEMPO for cooperative photocatalysis in selective aerobic oxidation of sulfides. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 2255-2260	7.8	19	
Coral-Inspired Nanoengineering Design for Long-Cycle and Flexible Lithium-Ion Battery Anode. <i>ACS Applied Materials & Design (Section 2016)</i> , 8, 9185-93	9.5	18	
Immobilizing Organic-Based Molecular Switches into Metal-Organic Frameworks: A Promising Strategy for Switching in Solid State. <i>Macromolecular Rapid Communications</i> , 2018 , 39, 1700388	4.8	17	
Synthesis and optical and electrochemical memory properties of fluorenellriphenylamine alternating copolymer. <i>RSC Advances</i> , 2017 , 7, 10323-10332	3.7	15	
Macrocyclic triphenylamine-based pushpull type polymer memristive material: synthesis and characterization. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 4023-4029	7.1	15	
Fabrication of bilayer tetrathiafulvalene integrated surface covalent organic frameworks. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 17356-9	3.6	15	
Hydrophilic polymer-stabilized porous composite membrane for water evaporation and solar desalination <i>RSC Advances</i> , 2020 , 10, 2507-2512	3.7	14	
Magnetic porous graphene/multi-walled carbon nanotube beads from microfluidics: a flexible and robust oil/water separation material. <i>RSC Advances</i> , 2017 , 7, 25334-25340	3.7	13	
Immobilization of AIEgens into metal-organic frameworks: Ligand design, emission behavior, and applications. <i>Journal of Polymer Science Part A</i> , 2017 , 55, 1809-1817	2.5	13	
Controllable Synthesis of Covalent Porphyrinic Cages with Varying Sizes via Template-Directed Imine Condensation Reactions. <i>Journal of Organic Chemistry</i> , 2015 , 80, 9360-4	4.2	13	
New perylene polyimides containing p-n diblocks for sensitization in TiO2 solar cells. <i>Polymers for Advanced Technologies</i> , 2004 , 15, 701-707	3.2	13	
High photoconductivity properties of perylene polyimide containing triarylamine unit. <i>Journal of Materials Science</i> , 2004 , 39, 4053-4056	4.3	12	
Luminescent electrospun composite nanofibers of [Eu(TFI)3(Phen)]ICHCl3/polyvinylpyrrolidone. <i>Journal of Materials Science</i> , 2013 , 48, 6682-6688	4.3	11	
Controlling the deposition of light-emitting nanofibers/microfibers by the electrospinning of a poly(p-phenylene vinylene) polyelectrolyte precursor. <i>Journal of Applied Polymer Science</i> , 2009 , 114, 1864-1869	2.9	11	
Controlled Release of Therapeutic Agents with Near-Infrared Laser for Synergistic Photochemotherapy toward Cervical Cancer. <i>Analytical Chemistry</i> , 2019 , 91, 6555-6560	7.8	10	
	Redox-triggered switching in three-dimensional covalent organic frameworks. <i>Nature Communications</i> , 2020, 11, 4919 Resistance-Switchable Graphene OxidePolymer Nanocomposites for Molecular Electronics. <i>ChemElectroChem</i> , 2014, 1, 514-519 A 2D porphyrin-based covalent organic framework with TEMPO for cooperative photocatalysis in selective aerobic oxidation of sulfides. <i>Materials Chemistry Frontiers</i> , 2021, 5, 2255-2260 Coral-Inspired Nanoengineering Design for Long-Cycle and Flexible Lithium-Ion Battery Anode. <i>ACS Applied Materials Ramp; Interfaces</i> , 2016, 8, 9185-93 Immobilizing Organic-Based Molecular Switches into Metal-Organic Frameworks: A Promising Strategy for Switching in Solid State. <i>Macromolecular Rapid Communications</i> , 2018, 39, 1700388 Synthesis and optical and electrochemical memory properties of fluoreneBriphenylamine alternating copolymer. <i>RSC Advances</i> , 2017, 7, 10323-10332 Macrocyclic triphenylamine-based pushibul type polymer memristive material: synthesis and characterization. <i>Journal of Materials Chemistry C</i> , 2018, 6, 4023-4029 Fabrication of bilayer tetrathiafulvalene integrated surface covalent organic frameworks. <i>Physical Chemistry Chemical Physics</i> , 2016, 18, 17356-9 Hydrophilic polymer-stabilized porous composite membrane for water evaporation and solar desalination. <i>RSC Advances</i> , 2020, 10, 2507-2512 Magnetic porous graphene/multi-walled carbon nanotube beads from microfluidics: a flexible and robust oil/water separation material-rapanic frameworks: Ligand design, emission behavior, and applications. <i>Journal of Polymer Science Part A</i> , 2017, 5, 1809-1817 Controllable Synthesis of Covalent Porphyrinic Cages with Varying Sizes via Template-Directed Imine Condensation Reactions. <i>Journal of Organic Chemistry</i> , 2015, 80, 9360-4 New perylene polyimides containing p-n diblocks for sensitization in TiO2 solar cells. <i>Polymers for Advanced Technologies</i> , 2004, 15, 701-707 High photoconductivity properties of perylene polyimide containing triarylamine unit. <i>Journal of Mate</i>	Redox-triggered switching in three-dimensional covalent organic frameworks. Nature Communications, 2020, 11, 4919 Resistance-Switchable Graphene OxideBolymer Nanocomposites for Molecular Electronics. ChemElectroChem, 2014, 1, 514-519 A 2D porphyrin-based covalent organic framework with TEMPO for cooperative photocatalysis in selective aerobic oxidation of sulfides. Materials Chemistry Frontiers, 2021, 5, 2255-2260 Coral-Inspired Nanoengineering Design for Long-Cycle and Flexible Lithium-Ion Battery Anode. ACS Applied Materials Samp; Interfaces, 2016, 6, 9185-93 Immobilizing Organic-Based Molecular Switches into Metal-Organic Frameworks: A Promising Strategy for Switching in Solid State. Macromolecular Rapid Communications, 2018, 39, 1700388 Synthesis and optical and electrochemical memory properties of fluorenetriphenylamine alternating copolymer. RSC Advances, 2017, 7, 10323-10332 Macrocyclic triphenylamine-based pushBull type polymer memristive materials synthesis and characterization. Journal of Materials Chemistry C, 2018, 6, 4023-4029 Tabrication of bilayer tetrathiafulvalene integrated surface covalent organic frameworks. Physical Chemistry Chemical Physics, 2016, 18, 17356-9 Hydrophilic polymer-stabilized porous composite membrane for water evaporation and solar desalination. RSC Advances, 2020, 10, 2507-2512 Magnetic porous graphene/multi-walled carbon nanotube beads from microfluidics: a flexible and robust oil/water separation material. RSC Advances, 2017, 7, 25334-25340 Immobilization of AlEgens into metal-organic frameworks: Ligand design, emission behavior, and applications. Journal of Polymer Science Part A, 2017, 55, 1809-1817 Controllable Synthesis of Covalent Porphyrinic Cages with Varying Sizes via Template-Directed Imine Condensation Reactions. Journal of Organic Chemistry, 2015, 80, 9360-4 New perylene polymides containing p-n diblocks for sensitization in TiO2 solar cells. Polymers for Advanced Technologies, 2004, 15, 701-707 High photoconductivity properties of perylene polymi	Redox-triggered switching in three-dimensional covalent organic frameworks. Nature Communications, 2020, 11, 4919 Resistance-Switchable Graphene OxideBolymer Nanocomposites for Molecular Electronics. ChemElectroChem, 2014, 1, 514-519 A 2D porphyrin-based covalent organic framework with TEMPO for cooperative photocatalysis in selective aerobic oxidation of sulfides. Naterials Chemistry Frontiers, 2021, 5, 2255-2260 Coral-Inspired Nanoengineering Design for Long-Cycle and Flexible Lithium-Ion Battery Anode. ACS Applied Materials & Amp; Interfaces, 2016, 8, 9185-93 Immobilizing Organic-Based Molecular Switches into Metal-Organic Frameworks: A Promising Strategy for Switching in Solid State. Macromolecular Rapid Communications, 2018, 39, 1700388 Synthesis and optical and electrochemical memory properties of fluoreneBriphenylamine alternating copolymer. RSC Advances, 2017, 7, 10323-10332 Macrocyclic triphenylamine-based pushbull type polymer memistive material: synthesis and characterization. Journal of Materials Chemistry, C 2018, 6, 4023-4029 Fabrication of bilayer tetrathiafulvalene integrated surface covalent organic frameworks. Physical Chemistry Chemical Physics, 2016, 18, 17356-9 Hydrophilic polymer-stabilized porous composite membrane for water evaporation and solar desalination. RSC Advances, 2020, 10, 2507-2512 Magnetic porous graphene/multi-walled carbon nanotube beads from microfluidics: a flexible and robust oil/water separation material. RSC Advances, 2017, 7, 25334-25340 Immobilization of AlEgens into metal-organic frameworks: Ligand design, emission behavior, and applications. Journal of Polymer Science Part A, 2017, 55, 1809-1817 Controllable Synthesis of Covalent Porphyrinic Cages with Varying Sizes via Template-Directed Imine Condensation Reactions. Journal of Organic Chemistry, 2015, 80, 9360-4 New perylene polyimides containing p-n diblocks for sensitization in TiO2 solar cells. Polymers for Advanced Technologies, 2004, 15, 701-707 High photoconductivity properties of perylene polyi

37	Novel polyimides containing flexible carbazole blocks with electrochromic and electrofluorescencechromic properties <i>RSC Advances</i> , 2020 , 10, 6992-7003	3.7	10
36	A pinecone-inspired nanostructure design for long-cycle and high performance Si anodes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5395-5401	13	10
35	Tuning of FEster Resonance Energy Transfer in Metal Drganic Frameworks: Toward Amplified Fluorescence Sensing. CCS Chemistry, 2021 , 3, 2054-2062	7.2	10
34	Preparation and multifunction of electrochromic polyamides containing flexible backbone chains with electrochemical, fluorescence and memory properties. <i>Applied Surface Science</i> , 2019 , 478, 906-915	6.7	8
33	Preparation and flash memory performance based on fluorene t riphenylamine copolymer (PFIIPA)/MWCNTs. <i>RSC Advances</i> , 2017 , 7, 54431-54440	3.7	8
32	Organic-inorganic hybrid electrochromic materials, polysilsesquioxanes containing triarylamine, changing color from colorless to blue. <i>Scientific Reports</i> , 2017 , 7, 14627	4.9	8
31	Fluorescent poly(p-phenylene vinylene)/poly(ethylene oxide) nanofibers obtained by electrospinning. <i>Journal of Polymer Research</i> , 2011 , 18, 477-482	2.7	8
30	Ternary Memory Devices Based on Bipolar Copolymers with Naphthalene Benzimidazole Acceptors and Fluorene/Carbazole Donors. <i>Macromolecules</i> , 2019 , 52, 9364-9375	5.5	8
29	Bistable electrical switching and nonvolatile memory effect in poly (9,9-dioctylfluorene-2,7-diyl) and multiple-walled carbon nanotubes. <i>Organic Electronics</i> , 2019 , 74, 110-117	3.5	7
28	Binding Quantum Dots to Silk Biomaterials for Optical Sensing. <i>Journal of Sensors</i> , 2015 , 2015, 1-10	2	7
27	Preparation and photoluminescent characterization of poly(phenylene vinylene)/TiO2 nanoparticles composite nanofibers by one-step electrospinning. <i>Journal of Applied Polymer Science</i> , 2012 , 126, 1061-1068	2.9	7
26	Electrochromic materials based on novel polymers containing triphenylamine units and benzo[c][1,2,5]thiadiazole units. <i>Synthetic Metals</i> , 2020 , 259, 116235	3.6	7
25	Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip. <i>Scientific Reports</i> , 2017 , 7, 44835	4.9	6
24	Bistable electrical switching and nonvolatile memory effects by doping different amounts of GO in poly(9,9-dioctylfluorene-2,7-diyl) <i>RSC Advances</i> , 2018 , 8, 6878-6886	3.7	5
23	Bistable non-volatile resistive memory devices based on ZnO nanoparticles embedded in polyvinylpyrrolidone <i>RSC Advances</i> , 2020 , 10, 14662-14669	3.7	5
22	Flash memory devices and bistable nonvolatile resistance switching properties based on PFO doping with ZnO <i>RSC Advances</i> , 2019 , 9, 9392-9400	3.7	4
21	Enhanced directional cell migration induced by vaccinia virus on a microfluidic-based multi-shear cell migration assay platform. <i>Integrative Biology (United Kingdom)</i> , 2017 , 9, 903-911	3.7	4
20	Tailoring the Pore Surface of 3D Covalent Organic Frameworks via Post-Synthetic Click Chemistry. Angewandte Chemie - International Edition, 2021,	16.4	4

19	Raspberry-like PS/CdTe/Silica Microspheres for Fluorescent Superhydrophobic Materials. <i>Nanoscale Research Letters</i> , 2016 , 11, 114	5	3
18	Supramolecular Assembly through the Highest Connectivity of a Keggin Polyoxometalate. <i>Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences</i> , 2010 , 65, 135-139	1	3
17	Nonvolatile bistable memory device based on polyfluorene with Ag NPs doping materials. <i>Organic Electronics</i> , 2020 , 78, 105549	3.5	3
16	Electrocatalysts: Nanometric Ni5P4 Clusters Nested on NiCo2O4 for Efficient Hydrogen Production via Alkaline Water Electrolysis (Adv. Energy Mater. 29/2018). <i>Advanced Energy Materials</i> , 2018 , 8, 18701	29 ^{I.8}	3
15	Highly Efficient Quasi-2D Green Perovskite Light-Emitting Diodes with Bifunctional Amino Acid. <i>Advanced Optical Materials</i> ,2200276	8.1	3
14	Multipurpose conjugated block copolymers based on novel triphenylylamine derivatives and squaric acid for electrochromic and resistive memory devices. <i>Polymer Testing</i> , 2020 , 81, 106245	4.5	2
13	Optoelectronic/memory storage properties of triphenylamine-based dual-function electrochromic materials. <i>Materials Chemistry and Physics</i> , 2022 , 275, 125196	4.4	2
12	Energy Storage in Covalent Organic Frameworks: From Design Principles to Device Integration. <i>Chemical Research in Chinese Universities</i> ,1	2.2	2
11	Design and Synthesis of p-n Conversion Indium-Oxide-Based Gas Sensor with High Sensitivity to NOx at Room-Temperature. <i>ChemistrySelect</i> , 2018 , 3, 2298-2305	1.8	1
10	Three-Dimensional Heteropolynuclear Zn4Ln2 Coordination Frameworks: Structure and NIR Luminescent Properties. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2011 , 637, 2223-2227	1.3	1
9	Efficient Suzuki-Miyaura cross-coupling reaction by loading trace Pd nanoparticles onto copper-complex-derived Cu/C-700 solid support. <i>Journal of Colloid and Interface Science</i> , 2021 , 608, 246	53 ⁹ 2 ³ 46	3 ¹
8	Multifunctional Flexible Polyimides for Electroactive Devices with Electrochromic, Electrofluorochromic, and Photodetection Properties. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 1338-134	18 ^{4.3}	1
7	Dithienopyrrole-/Benzodithiophene-Based Donor Acceptor Polymers for Memristor. <i>ChemPlusChem</i> , 2014 , 79, 1235-1235	2.8	O
6	Non-volatile ternary memristors based on a polymer containing a carbazole donor with CuO NPs embedded. <i>New Journal of Chemistry</i> , 2022 , 46, 704-713	3.6	O
5	Electrochromic properties of pyrene conductive polymers modified by chemical polymerization <i>RSC Advances</i> , 2021 , 11, 39291-39305	3.7	0
4	Realizing the Conversion of Resistive Switching Behavior from Binary to Ternary by Adjusting the Charge Traps in the Polymers. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 2807-2817	4	O
3	Novel carbazole-based donor-isoindolo[2,1-]benzimidazol-11-one acceptor polymers for ternary flash memory and light-emission <i>RSC Advances</i> , 2019 , 9, 27665-27673	3.7	
2	Resistance-Switchable Graphene Oxide B olymer Nanocomposites for Molecular Electronics. <i>ChemElectroChem</i> , 2014 , 1, 478-478	4.3	

Ternary Resistive Switching Memory Behavior of Polycarbazole:TiO2 Nanoparticles-based Device. *Thin Solid Films*, **2022**, 139291

2.2