
Arthur S Slutsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5297655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2012, 307, 2526-33.	3.8	6,995
2	Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA - Journal of the American Medical Association, 2016, 315, 788.	3.8	3,568
3	A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Medicine, 2005, 11, 875-879.	15.2	2,986
4	Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 2005, 436, 112-116.	13.7	2,264
5	Functional Disability 5 Years after Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2011, 364, 1293-1304.	13.9	2,228
6	One-Year Outcomes in Survivors of the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2003, 348, 683-693.	13.9	2,073
7	Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 2020, 46, 586-590.	3.9	2,071
8	Ventilator-Induced Lung Injury. New England Journal of Medicine, 2013, 369, 2126-2136.	13.9	2,030
9	Driving Pressure and Survival in the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2015, 372, 747-755.	13.9	1,905
10	Association Between Administration of Systemic Corticosteroids and Mortality Among Critically III Patients With COVID-19. JAMA - Journal of the American Medical Association, 2020, 324, 1330.	3.8	1,855
11	Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell, 2020, 181, 905-913.e7.	13.5	1,827
12	Effect of Mechanical Ventilation on Inflammatory Mediators in Patients With Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 1999, 282, 54.	3.8	1,605
13	Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2018, 378, 1965-1975.	13.9	1,563
14	High-Frequency Oscillation in Early Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2013, 368, 795-805.	13.9	1,209
15	Higher vs Lower Positive End-Expiratory Pressure in Patients With Acute Lung Injury and Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2010, 303, 865.	3.8	1,192
16	Identification of Oxidative Stress and Toll-like Receptor 4 Signaling as a Key Pathway of Acute Lung Injury. Cell, 2008, 133, 235-249.	13.5	1,164
17	Ventilation Strategy Using Low Tidal Volumes, Recruitment Maneuvers, and High Positive End-Expiratory Pressure for Acute Lung Injury and Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2008, 299, 637.	3.8	1,148
18	The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Medicine, 2012, 38, 1573-1582.	3.9	1,112

#	Article	IF	CITATIONS
19	An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1253-1263.	2.5	1,104
20	Identification of Severe Acute Respiratory Syndrome in Canada. New England Journal of Medicine, 2003, 348, 1995-2005.	13.9	1,009
21	Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2018, 319, 698.	3.8	983
22	Evaluation of a Ventilation Strategy to Prevent Barotrauma in Patients at High Risk for Acute Respiratory Distress Syndrome. New England Journal of Medicine, 1998, 338, 355-361.	13.9	899
23	Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 438-442.	2.5	846
24	Therapeutic Anticoagulation with Heparin in Noncritically Ill Patients with Covid-19. New England Journal of Medicine, 2021, 385, 790-802.	13.9	778
25	Titration and Implementation of Neurally Adjusted Ventilatory Assist in Critically III Patients. Chest, 2009, 135, 695-703.	0.4	736
26	Inspiratory Muscle Unloading by Neurally Adjusted Ventilatory Assist During Maximal Inspiratory Efforts in Healthy Subjects. Chest, 2007, 131, 711-717.	0.4	729
27	Therapeutic Anticoagulation with Heparin in Critically Ill Patients with Covid-19. New England Journal of Medicine, 2021, 385, 777-789.	13.9	712
28	Tidal Hyperinflation during Low Tidal Volume Ventilation in Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 160-166.	2.5	699
29	Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry. Lancet, The, 2020, 396, 1071-1078.	6.3	656
30	Mesenchymal Stem Cells Reduce Inflammation while Enhancing Bacterial Clearance and Improving Survival in Sepsis. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1047-1057.	2.5	622
31	Injurious Mechanical Ventilation and End-Organ Epithelial Cell Apoptosis and Organ Dysfunction in an Experimental Model of Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2003, 289, 2104.	3.8	604
32	Mechanical Ventilation. Chest, 1993, 104, 1833-1859.	0.4	540
33	Lung Injury Caused by Mechanical Ventilation. Chest, 1999, 116, 9S-15S.	0.4	524
34	Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respiratory Medicine,the, 2020, 8, 1201-1208.	5.2	516
35	Future Research Directions in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 1027-1035.	2.5	489
36	Lower tidal volume strategy (â‰^3Âml/kg) combined with extracorporeal CO2 removal versus â€~conventional' protective ventilation (6Âml/kg) in severe ARDS. Intensive Care Medicine, 2013, 39, 847-85	6. ^{3.9}	474

#	Article	IF	CITATIONS
37	Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Medicine, 2006, 32, 24-33.	3.9	464
38	Effects of Recruiting Maneuvers in Patients with Acute Respiratory Distress Syndrome Ventilated with Protective Ventilatory Strategy. Anesthesiology, 2002, 96, 795-802.	1.3	462
39	Critical care crisis and some recommendations during the COVID-19 epidemic in China. Intensive Care Medicine, 2020, 46, 837-840.	3.9	459
40	Noninvasive Ventilation of Patients with Acute Respiratory Distress Syndrome. Insights from the LUNG SAFE Study. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 67-77.	2.5	456
41	Sleep in Critically Ill Patients Requiring Mechanical Ventilation. Chest, 2000, 117, 809-818.	0.4	426
42	Two-Year Outcomes, Health Care Use, and Costs of Survivors of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 538-544.	2.5	405
43	COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted?. Lancet Respiratory Medicine,the, 2020, 8, 816-821.	5.2	375
44	Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome and Posterior Probability of Mortality Benefit in a Post Hoc Bayesian Analysis of a Randomized Clinical Trial. JAMA - Journal of the American Medical Association, 2018, 320, 2251.	3.8	367
45	Human recombinant soluble ACE2 in severe COVID-19. Lancet Respiratory Medicine,the, 2020, 8, 1154-1158.	5.2	340
46	Warm heart surgery. Journal of Thoracic and Cardiovascular Surgery, 1991, 101, 269-274.	0.4	338
47	Effect of a Lung Protective Strategy for Organ Donors on Eligibility and Availability of Lungs for Transplantation. JAMA - Journal of the American Medical Association, 2010, 304, 2620.	3.8	307
48	One-Year Outcomes in Caregivers of Critically Ill Patients. New England Journal of Medicine, 2016, 374, 1831-1841.	13.9	301
49	Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Medicine, 2020, 46, 2200-2211.	3.9	295
50	Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Critical Care Medicine, 1994, 22, 917-921.	0.4	292
51	Critically Ill Patients With Severe Acute Respiratory Syndrome. JAMA - Journal of the American Medical Association, 2003, 290, 367.	3.8	290
52	Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia—A review. Critical Care Medicine, 2006, 34, 871-877.	0.4	281
53	PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nature Medicine, 2004, 10, 155-160.	15.2	276
54	The RECOVER Program: Disability Risk Groups and 1-Year Outcome after 7 or More Days of Mechanical Ventilation. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 831-844.	2.5	272

#	Article	IF	CITATIONS
55	Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Medicine, 2004, 30, 1865-1872.	3.9	264
56	What Tidal Volumes Should Be Used in Patients without Acute Lung Injury?. Anesthesiology, 2007, 106, 1226-1231.	1.3	263
57	Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Critical Care Medicine, 2004, 32, 1018-1027.	0.4	261
58	Functional Repair of Human Donor Lungs by IL-10 Gene Therapy. Science Translational Medicine, 2009, 1, 4ra9.	5.8	258
59	Extracorporeal membrane oxygenation for COVID-19: evolving outcomes from the international Extracorporeal Life Support Organization Registry. Lancet, The, 2021, 398, 1230-1238.	6.3	257
60	Extracorporeal Life Support for Adults With Respiratory Failure and Related Indications. JAMA - Journal of the American Medical Association, 2019, 322, 557.	3.8	251
61	CXCL10-CXCR3 Enhances the Development of Neutrophil-mediated Fulminant Lung Injury of Viral and Nonviral Origin. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 65-77.	2.5	248
62	Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Medicine, 2016, 42, 1865-1876.	3.9	247
63	One-Year Outcomes and Health Care Utilization in Survivors of Severe Acute Respiratory Syndrome. Archives of Internal Medicine, 2007, 167, 1312.	4.3	244
64	Position paper for the organization of ECMO programs for cardiac failure in adults. Intensive Care Medicine, 2018, 44, 717-729.	3.9	230
65	Respiratory Arrest in near-Fatal Asthma. New England Journal of Medicine, 1991, 324, 285-288.	13.9	229
66	Mechanical ventilation and acute renal failure*. Critical Care Medicine, 2005, 33, 1408-1415.	0.4	215
67	Ventilator-induced lung injury:from the bench to the bedside. , 2009, , 429-438.		210
68	Lung injury in neonates: Causes, strategies for prevention, and long-term consequences. Journal of Pediatrics, 2001, 139, 478-486.	0.9	196
69	Patient-Ventilator Interaction During Neurally Adjusted Ventilatory Assist in Low Birth Weight Infants. Pediatric Research, 2009, 65, 663-668.	1.1	195
70	Impact of climate and public health interventions on the COVID-19 pandemic: a prospective cohort study. Cmaj, 2020, 192, E566-E573.	0.9	192
71	Mechanical Ventilation: State of the Art. Mayo Clinic Proceedings, 2017, 92, 1382-1400.	1.4	191
72	The Incidence of the Adult Respiratory Distress Syndrome. The American Review of Respiratory Disease, 1989, 140, 814-816.	2.9	186

5

#	Article	IF	CITATIONS
73	The role of oxidative stress in adult critical care. Free Radical Biology and Medicine, 2006, 40, 398-406.	1.3	186
74	The role for high flow nasal cannula as a respiratory support strategy in adults: a clinical practice guideline. Intensive Care Medicine, 2020, 46, 2226-2237.	3.9	185
75	Lung–Kidney Cross-Talk in the Critically III Patient. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 402-414.	2.5	181
76	Partial Liquid Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 882-889.	2.5	177
77	Associations between ventilator settings during extracorporeal membrane oxygenation for refractory hypoxemia and outcome in patients with acute respiratory distress syndrome: a pooled individual patient data analysis. Intensive Care Medicine, 2016, 42, 1672-1684.	3.9	176
78	Biotrauma and Ventilator-Induced LungÂlnjury. Chest, 2016, 150, 1109-1117.	0.4	176
79	Effects of cyclic opening and closing at low- and high-volume ventilation on bronchoalveolar lavage cytokines*. Critical Care Medicine, 2004, 32, 168-174.	0.4	173
80	Induction of Heat Stress Proteins Is Associated with Decreased Mortality in an Animal Model of Acute Lung Injury. The American Review of Respiratory Disease, 1993, 147, 177-181.	2.9	170
81	Neuromuscular Blocking Agents in ARDS. New England Journal of Medicine, 2010, 363, 1176-1180.	13.9	170
82	Sodium arsenite induces heat shock protein-72 kilodalton expression in the lungs and protects rats against sepsis. Critical Care Medicine, 1994, 22, 922-929.	0.4	166
83	Comparison of lung protection strategies using conventional and high-frequency oscillatory ventilation. Journal of Applied Physiology, 2001, 91, 1836-1844.	1.2	166
84	Acute respiratory distress syndrome: new definition, current and future therapeutic options. Journal of Thoracic Disease, 2013, 5, 326-34.	0.6	166
85	Inhaled Nitric Oxide Does Not Reduce Mortality in Patients With Acute Respiratory Distress Syndrome Regardless of Severity. Critical Care Medicine, 2014, 42, 404-412.	0.4	164
86	Dose-Response Relationship and Reproducibility of the Fall in Exhaled Nitric Oxide After Inhaled Beclomethasone Dipropionate Therapy in Asthma Patients. Chest, 2001, 119, 1322-1328.	0.4	160
87	Alveolar dynamics in acute lung injury: Heterogeneous distension rather than cyclic opening and collapse*. Critical Care Medicine, 2009, 37, 2604-2611.	0.4	160
88	Oxygenation Response to Positive End-Expiratory Pressure Predicts Mortality in Acute Respiratory Distress Syndrome. A Secondary Analysis of the LOVS and ExPress Trials. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 70-76.	2.5	160
89	THE CONTRIBUTION OF BIOPHYSICAL LUNG INJURY TO THE DEVELOPMENT OF BIOTRAUMA. Annual Review of Physiology, 2006, 68, 585-618.	5.6	152
90	Ventilatory Variables and Mechanical Power in Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 303-311.	2.5	148

#	Article	IF	CITATIONS
91	Injurious ventilation induces widespread pulmonary epithelial expression of tumor necrosis factor-α and interleukin-6 messenger RNA*. Critical Care Medicine, 2002, 30, 1693-1700.	0.4	147
92	History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1106-1115.	2.5	147
93	Mechanical Ventilation–associated Lung Fibrosis in Acute Respiratory Distress Syndrome. Anesthesiology, 2014, 121, 189-198.	1.3	145
94	Temporary circulatory support for cardiogenic shock. Lancet, The, 2020, 396, 199-212.	6.3	142
95	Lung recruitment during small tidal volume ventilation allows minimal positive end-expiratory pressure without augmenting lung injury. Critical Care Medicine, 1999, 27, 1940-1945.	0.4	142
96	ARDSNetLower Tidal Volume Ventilatory Strategy May Generate Intrinsic Positive End-Expiratory Pressure in Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 1271-1274.	2.5	140
97	Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure. Lancet Respiratory Medicine,the, 2019, 7, 90-98.	5.2	139
98	Tidal Volume and Frequency Dependence of Carbon Dioxide Elimination by High-Frequency Ventilation. New England Journal of Medicine, 1981, 305, 1375-1379.	13.9	134
99	Lung Protective Strategies of Ventilation in the Neonate: What Are They?. Pediatrics, 2000, 105, 112-114.	1.0	130
100	Increased Nitric Oxide in Exhaled Gas as an Early Marker of Lung Inflammation in a Model of Sepsis. American Journal of Respiratory and Critical Care Medicine, 1995, 151, 713-718.	2.5	129
101	Mechanical stress induces lung fibrosis by epithelial–mesenchymal transition*. Critical Care Medicine, 2012, 40, 510-517.	0.4	128
102	Effects of induced hypothermia in patients with septic adult respiratory distress syndrome. Resuscitation, 1993, 26, 183-192.	1.3	125
103	Combining high-frequency oscillatory ventilation and recruitment maneuvers in adults with early acute respiratory distress syndrome: The Treatment with Oscillation and an Open Lung Strategy (TOOLS) Trial pilot study*. Critical Care Medicine, 2005, 33, 479-486.	0.4	123
104	Mechanical ventilation: lessons from the ARDSNet trial. Respiratory Research, 2000, 1, 73-7.	1.4	122
105	Effect of Lowering V <scp>t</scp> on Mortality in Acute Respiratory Distress Syndrome Varies with Respiratory System Elastance. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1378-1385.	2.5	118
106	William J. Sibbald: In Memoriam. Critical Care Medicine, 2007, 35, 1-2.	0.4	115
107	Development of a clinical definition for acute respiratory distress syndrome using the Delphi technique. Journal of Critical Care, 2005, 20, 147-154.	1.0	114
108	Extracorporeal cardiopulmonary resuscitation in adults: evidence and implications. Intensive Care Medicine, 2022, 48, 1-15.	3.9	114

#	Article	IF	CITATIONS
109	Influence of neurally adjusted ventilatory assist and positive end-expiratory pressure on breathing pattern in rabbits with acute lung injury*. Critical Care Medicine, 2006, 34, 2997-3004.	0.4	113
110	Heat stress increases survival rates in lipopolysaccharide-stimulated rats. Critical Care Medicine, 1997, 25, 1727-1732.	0.4	113
111	Ventilator-induced Lung Injury. Similarity and Differences between Children and Adults. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 258-265.	2.5	111
112	Mechanical ventilation alters the immune response in children without lung pathology. Intensive Care Medicine, 2002, 28, 486-492.	3.9	109
113	Venoarterial extracorporeal membrane oxygenation to rescue sepsis-induced cardiogenic shock: a retrospective, multicentre, international cohort study. Lancet, The, 2020, 396, 545-552.	6.3	108
114	Physiologic assessment of the ex vivo donor lung for transplantation. Journal of Heart and Lung Transplantation, 2012, 31, 1120-1126.	0.3	107
115	LYMPHOCYTIC AIRWAY INFILTRATION AS A PRECURSOR TO FIBROUS OBLITERATION IN A RAT MODEL OF BRONCHIOLITIS OBLITERANS1,2. Transplantation, 1997, 64, 311-317.	0.5	107
116	Ventilation with Small Tidal Volumes. New England Journal of Medicine, 2002, 347, 630-631.	13.9	104
117	A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Critical Care, 2019, 23, 346.	2.5	104
118	Human neutrophil peptides induce interleukin-8 production through the P2Y6 signaling pathway. Blood, 2006, 107, 2936-2942.	0.6	103
119	Lung Repair and Regeneration in ARDS. Chest, 2019, 155, 587-594.	0.4	100
120	Exhaled Nitric Oxide and Bronchial Reactivity During and After Inhaled Beclomethasone in Mild Asthma. Journal of Asthma, 1998, 35, 473-479.	0.9	98
121	ECMO for ARDS: from salvage to standard of care?. Lancet Respiratory Medicine,the, 2019, 7, 108-110.	5.2	98
122	Extracorporeal life support for adults with acute respiratory distress syndrome. Intensive Care Medicine, 2020, 46, 2464-2476.	3.9	98
123	Mechanical Stress and the Induction of Lung Fibrosis via the Midkine Signaling Pathway. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 315-323.	2.5	93
124	Geo-economic variations in epidemiology, patterns of care, and outcomes in patients with acute respiratory distress syndrome: insights from the LUNG SAFE prospective cohort study. Lancet Respiratory Medicine,the, 2017, 5, 627-638.	5.2	93
125	Ventilator-induced lung injury: from barotrauma to biotrauma. Respiratory Care, 2005, 50, 646-59.	0.8	93
126	Improved Synchrony and Respiratory Unloading by Neurally Adjusted Ventilatory Assist (NAVA) in Lung-Injured Rabbits. Pediatric Research, 2007, 61, 289-294.	1.1	92

#	Article	IF	CITATIONS
127	Long-term follow-up of survivors of acute lung injury: Lack of effect of a ventilation strategy to prevent barotrauma. Critical Care Medicine, 1999, 27, 2616-2621.	0.4	92
128	Neuroimmune Regulation of Ventilator-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 471-482.	2.5	91
129	Novel approaches to minimize ventilator-induced lung injury. BMC Medicine, 2013, 11, 85.	2.3	90
130	Neutrophil defensins mediate acute inflammatory response and lung dysfunction in dose-related fashion. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L947-L954.	1.3	88
131	Data Safety and Monitoring Boards. New England Journal of Medicine, 2004, 350, 1143-1147.	13.9	88
132	Prevention of viral transmission during lung transplantation with hepatitis C-viraemic donors: an open-label, single-centre, pilot trial. Lancet Respiratory Medicine,the, 2020, 8, 192-201.	5.2	87
133	Human soluble ACE2 improves the effect of remdesivir in SARS oVâ€2 infection. EMBO Molecular Medicine, 2021, 13, e13426.	3.3	87
134	Mechanical stretch stimulates macrophage inflammatory protein-2 secretion from fetal rat lung cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L699-L706.	1.3	86
135	Circadian rhythms. Critical Care Medicine, 2012, 40, 246-253.	0.4	86
136	Neuroventilatory efficiency and extubation readiness in critically ill patients. Critical Care, 2012, 16, R143.	2.5	86
137	Effect of different inspiratory rise time and cycling off criteria during pressure support ventilation in patients recovering from acute lung injury. Critical Care Medicine, 2003, 31, 2604-2610.	0.4	85
138	Conventional Mechanical Ventilation Is Associated with Bronchoalveolar Lavage-induced Activation of Polymorphonuclear Leukocytes. Anesthesiology, 2002, 97, 1426-1433.	1.3	84
139	Respiratory support in patients with acute respiratory distress syndrome: an expert opinion. Critical Care, 2017, 21, 240.	2.5	84
140	Plasma levels of surfactant protein D and KL-6 for evaluation of lung injury in critically ill mechanically ventilated patients. BMC Pulmonary Medicine, 2010, 10, 6.	0.8	83
141	Sleep apnea and systemic hypertension: A causal association review. American Journal of Medicine, 1991, 91, 190-196.	0.6	81
142	Subject–ventilator synchrony during neural versus pneumatically triggered non-invasive helmet ventilation. Intensive Care Medicine, 2008, 34, 1615-1623.	3.9	81
143	High-frequency oscillatory ventilation and ventilator-induced lung injury. Critical Care Medicine, 2005, 33, S129-S134.	0.4	80
144	PEEP or No PEEP — Lung Recruitment May Be the Solution. New England Journal of Medicine, 2006, 354, 1839-1841.	13.9	80

#	Article	IF	CITATIONS
145	Molecular mechanisms of sex bias differences in COVID-19 mortality. Critical Care, 2020, 24, 405.	2.5	79
146	Respiratory Mechanics in Acute Quadriplegia: Lung and Chest Wall Compliance and Dimensional Changes during Respiratory Maneuvers. The American Review of Respiratory Disease, 1989, 139, 615-620.	2.9	78
147	Rapid reperfusion causes stress failure in ischemic rat lungs. Journal of Thoracic and Cardiovascular Surgery, 1998, 116, 932-942.	0.4	78
148	Inflammation and the acute respiratory distress syndrome. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2004, 18, 477-492.	1.7	76
149	Acute respiratory distress syndrome and multiple organ failure. Current Opinion in Critical Care, 2011, 17, 1-6.	1.6	75
150	Not Just Oxygen? Mechanisms of Benefit from High-Flow Nasal Cannula in Hypoxemic Respiratory Failure. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1128-1131.	2.5	75
151	Extracorporeal organ support (ECOS) in critical illness and acute kidney injury: from native to artificial organ crosstalk. Intensive Care Medicine, 2018, 44, 1447-1459.	3.9	75
152	PRODUCTION OF TUMOUR NECROSIS FACTOR $\hat{I}\pm$ BY PRIMARY CULTURED RAT ALVEOLAR EPITHELIAL CELLS. Cytokine, 2000, 12, 644-654.	1.4	73
153	Pressure and Volume Limited Ventilation for the Ventilatory Management of Patients with Acute Lung Injury: A Systematic Review and Meta-Analysis. PLoS ONE, 2011, 6, e14623.	1.1	72
154	Human alveolar epithelial type II cells in primary culture. Physiological Reports, 2015, 3, e12288.	0.7	71
155	Decreased exhaled nitric oxide may be a marker of cardiopulmonary bypass–induced injury. Annals of Thoracic Surgery, 1998, 66, 532-534.	0.7	70
156	Effect of ventilator-induced lung injury on the development of reperfusion injury in a rat lung transplant model. Journal of Thoracic and Cardiovascular Surgery, 2002, 124, 1137-1144.	0.4	70
157	Mechanical ventilation may increase susceptibility to the development of bacteremia. Critical Care Medicine, 2003, 31, 1429-1434.	0.4	70
158	Role of oxidative stress in experimental sepsis and multisystem organ dysfunction. Free Radical Research, 2006, 40, 665-672.	1.5	70
159	Human neutrophil peptides: a novel potential mediator of inflammatory cardiovascular diseases. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1817-H1824.	1.5	70
160	Neurally adjusted ventilatory assist decreases ventilator-induced lung injury and non-pulmonary organ dysfunction in rabbits with acute lung injury. Intensive Care Medicine, 2009, 35, 1979-89.	3.9	70
161	Five percent albumin for adult burn shock resuscitation: lack of effect on daily multiple organ dysfunction score. Transfusion, 2006, 46, 80-89.	0.8	68
162	Idiopathic Pulmonary Fibrosis — New Insights. New England Journal of Medicine, 2007, 356, 1370-1372.	13.9	68

#	Article	IF	CITATIONS
163	Biotrauma Hypothesis of Ventilator-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 314-316.	2.5	65
164	Accuracy of Plateau Pressure and Stress Index to Identify Injurious Ventilation in Patients with Acute Respiratory Distress Syndrome. Anesthesiology, 2013, 119, 880-889.	1.3	65
165	Clinical Issues and Research in Respiratory Failure from Severe Acute Respiratory Syndrome. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 518-526.	2.5	64
166	Non-invasive neurally adjusted ventilatory assist in rabbits with acute lung injury. Intensive Care Medicine, 2008, 34, 316-323.	3.9	64
167	Neuromuscular Blocking Agent Cisatracurium Attenuates Lung Injury by Inhibition of Nicotinic Acetylcholine Receptor-I±1. Anesthesiology, 2016, 124, 132-140.	1.3	64
168	Immediate and Delayed Bronchoconstriction after Exercise in Patients with Asthma. New England Journal of Medicine, 1987, 317, 482-485.	13.9	63
169	Ischemia and Reperfusion Increases Susceptibility to Ventilator-induced Lung Injury in Rats. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 178-186.	2.5	63
170	A simple nomogram for predicting failure of non-invasive respiratory strategies in adults with COVID-19: a retrospective multicentre study. The Lancet Digital Health, 2021, 3, e166-e174.	5.9	63
171	Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future. Lancet Respiratory Medicine,the, 2018, 6, 874-884.	5.2	62
172	Activation of the Wnt/β-Catenin Signaling Pathway by Mechanical Ventilation Is Associated with Ventilator-Induced Pulmonary Fibrosis in Healthy Lungs. PLoS ONE, 2011, 6, e23914.	1.1	62
173	Pulmonary surfactant is altered during mechanical ventilation of isolated rat lung. Critical Care Medicine, 2000, 28, 2545-2551.	0.4	61
174	The Fatality-Prone Asthmatic Patient. Chest, 1992, 101, 621-623.	0.4	60
175	The Acute Respiratory Distress Syndrome, Mechanical Ventilation, and the Prone Position. New England Journal of Medicine, 2001, 345, 610-612.	13.9	58
176	Physiological response to increasing levels of neurally adjusted ventilatory assist (NAVA). Respiratory Physiology and Neurobiology, 2009, 166, 117-124.	0.7	58
177	THE EFFECT OF LOW-POTASSIUM-DEXTRAN VERSUS EURO-COLLINS SOLUTION FOR PRESERVATION OF ISOLATED TYPE II PNEUMOCYTES. Transplantation, 1991, 52, 621-625.	0.5	57
178	Reliable thirty-hour lung preservation by donor lung hyperinflation. Journal of Thoracic and Cardiovascular Surgery, 1992, 104, 1075-1083.	0.4	57
179	Anti-Thrombotic Therapy to Ameliorate Complications of COVID-19 (ATTACC): Study design and methodology for an international, adaptive Bayesian randomized controlled trial. Clinical Trials, 2020, 17, 491-500.	0.7	56
180	Amelioration of Post-ischemic Lung Reperfusion Injury by Prostaglandin E1. The American Review of Respiratory Disease, 1993, 148, 882-889.	2.9	55

#	Article	IF	CITATIONS
181	Applying Precision Medicine to Trial Design Using Physiology. Extracorporeal CO ₂ Removal for Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 558-568.	2.5	55
182	Current and evolving standards of care for patients with ARDS. Intensive Care Medicine, 2020, 46, 2157-2167.	3.9	55
183	Characterization of Neural Breathing Pattern in Spontaneously Breathing Preterm Infants. Pediatric Research, 2011, 70, 607-613.	1.1	54
184	Clinical trials in critical care: can a Bayesian approach enhance clinical and scientific decision making?. Lancet Respiratory Medicine,the, 2021, 9, 207-216.	5.2	54
185	Modulation of Bacterial Growth by Tumor Necrosis Factor-αIn VitroandIn Vivo. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 1462-1470.	2.5	53
186	Human Neutrophil Peptides and Phagocytic Deficiency in Bronchiectatic Lungs. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 159-166.	2.5	53
187	Partial liquid ventilation decreases serum tumor necrosis factor-α concentrations in a rat acid aspiration lung injury model. Critical Care Medicine, 2000, 28, 479-483.	0.4	53
188	Nonconventional Methods of Ventilation. The American Review of Respiratory Disease, 1988, 138, 175-183.	2.9	52
189	Effect of Mechanical Ventilation on Cytokine Response to Intratracheal Lipopolysaccharide. Anesthesiology, 2004, 101, 52-58.	1.3	52
190	Association of Low Baseline Diaphragm Muscle Mass With Prolonged Mechanical Ventilation and Mortality Among Critically III Adults. JAMA Network Open, 2020, 3, e1921520.	2.8	52
191	Inhibition of Poly(Adenosine Diphosphate–Ribose) Polymerase Attenuates Ventilator-induced Lung Injury. Anesthesiology, 2008, 108, 261-268.	1.3	52
192	Warm heart surgery: Experience with long cross-clamp times. Annals of Thoracic Surgery, 1991, 52, 1009-1013.	0.7	51
193	Tumor Necrosis Factor- α Mediates Lipopolysaccharide-Induced Macrophage Inflammatory Protein-2 Release from Alveolar Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 1999, 21, 510-520.	1.4	51
194	Complete countrywide mortality in COVID patients receiving ECMO in Germany throughout the first three waves of the pandemic. Critical Care, 2021, 25, 413.	2.5	51
195	Early Paralytic Agents for ARDS? Yes, No, and Sometimes. New England Journal of Medicine, 2019, 380, 2061-2063.	13.9	50
196	Activating Transcription Factor 3 Confers Protection against Ventilator-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 489-500.	2.5	49
197	Evaluation of PEEP and prone positioning in early COVID-19 ARDS. EClinicalMedicine, 2020, 28, 100579.	3.2	49
198	Human Neutrophil Peptides Mediate Endothelial-Monocyte Interaction, Foam Cell Formation, and Platelet Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2070-2079.	1.1	48

#	Article	IF	CITATIONS
199	Is severe COVID-19 pneumonia a typical or atypical form of ARDS? And does it matter?. Intensive Care Medicine, 2021, 47, 83-85.	3.9	48
200	A quantitative assessment of how Canadian intensivists believe they utilize oxygen in the intensive care unit. Critical Care Medicine, 1999, 27, 2806-2811.	0.4	48
201	Major Histocompatibility Complex Expression and Lung Ischemia-Reperfusion in Rats. Annals of Thoracic Surgery, 1996, 62, 866-872.	0.7	47
202	Alveolar recruitment prevents rapid-reperfusion–induced injury of lung transplants. Journal of Heart and Lung Transplantation, 1999, 18, 1096-1102.	0.3	47
203	Effects of albumin and Ringer's lactate on production of lung cytokines and hydrogen peroxide after resuscitated hemorrhage and endotoxemia in rats. Critical Care Medicine, 2003, 31, 1515-1522.	0.4	47
204	A cysteinyl leukotriene 2 receptor variant is associated with atopy in the population of Tristan da Cunha. Pharmacogenetics and Genomics, 2003, 13, 641-649.	5.7	47
205	Mechanical Ventilation in Adults with Acute Respiratory Distress Syndrome. Summary of the Experimental Evidence for the Clinical Practice Guideline. Annals of the American Thoracic Society, 2017, 14, S261-S270.	1.5	47
206	Angiotensin-converting enzyme insertion/deletion polymorphism is not associated with susceptibility and outcome in sepsis and acute respiratory distress syndrome. Intensive Care Medicine, 2008, 34, 488-495.	3.9	46
207	Mechanical ventilation modulates Toll-like receptor signaling pathway in a sepsis-induced lung injury model. Intensive Care Medicine, 2010, 36, 1049-1057.	3.9	45
208	Gender-Based Differences in Outcomes Among Resuscitated Patients With Out-of-Hospital Cardiac Arrest. Circulation, 2021, 143, 641-649.	1.6	45
209	Celiprolol, Atenolol and Propranolol. Journal of Cardiovascular Pharmacology, 1986, 8, S105-S108.	0.8	44
210	Oxygen Transport and Oxygen Consumption in Critically III Patients. Chest, 1990, 98, 687-692.	0.4	44
211	Early activation of pro-fibrotic WNT5A in sepsis-induced acute lung injury. Critical Care, 2014, 18, 568.	2.5	44
212	EFFECT OF COMPLEMENT INHIBITION WITH SOLUBLE COMPLEMENT RECEPTOR 1 ON PIG ALLOTRANSPLANT LUNG FUNCTION1. Transplantation, 1998, 66, 723-732.	0.5	44
213	LOW-POTASSIUM UW SOLUTION FOR LUNG PRESERVATION. Transplantation, 1991, 52, 984-988.	0.5	42
214	Perfluorocarbon blocks tumor necrosis factor-α-induced interleukin-8 release from alveolar epithelial cells in vitro. Critical Care Medicine, 2000, 28, 1113-1118.	0.4	42
215	Point:Counterpoint: High-frequency ventilation is/is not the optimal physiological approach to ventilate ARDS patients. Journal of Applied Physiology, 2008, 104, 1230-1231.	1.2	42
216	Effect of Moderate Hypothermia vs Normothermia on 30-Day Mortality in Patients With Cardiogenic Shock Receiving Venoarterial Extracorporeal Membrane Oxygenation. JAMA - Journal of the American Medical Association, 2022, 327, 442.	3.8	42

#	Article	IF	CITATIONS
217	Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model. Respiratory Research, 2010, 11, 27.	1.4	40
218	Determinants of the effect of extracorporeal carbon dioxide removal in the SUPERNOVA trial: implications for trial design. Intensive Care Medicine, 2019, 45, 1219-1230.	3.9	40
219	Alterations of nitric oxide synthase expression and activity during rat lung transplantation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L1071-L1081.	1.3	39
220	Anticipating and managing coagulopathy and thrombotic manifestations of severe COVID-19. Cmaj, 2020, 192, E1156-E1161.	0.9	39
221	Anticardiolipin and other antiphospholipid antibodies in critically ill COVID-19 positive and negative patients. Annals of the Rheumatic Diseases, 2021, 80, 1236-1240.	0.5	39
222	Has high-frequency ventilation been inappropriately discarded in adult acute respiratory distress syndrome?. Critical Care Medicine, 1998, 26, 2073-2077.	0.4	39
223	Is acute respiratory distress syndrome an iatrogenic disease?. Critical Care, 2010, 14, 120.	2.5	38
224	High-Flow Nasal Oxygen for Severe Hypoxemia: Oxygenation Response and Outcome in Patients with COVID-19. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 431-439.	2.5	38
225	Prevalence of Body Mass Index Lower Than 16 Among Women in Low- and Middle-Income Countries. JAMA - Journal of the American Medical Association, 2015, 314, 2164.	3.8	37
226	Solving the Opioid Crisis. Chest, 2019, 156, 653-658.	0.4	37
227	Association of Positive End-Expiratory Pressure and Lung Recruitment Selection Strategies with Mortality in Acute Respiratory Distress Syndrome: A Systematic Review and Network Meta-analysis. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1300-1310.	2.5	37
228	Adaptive support ventilation versus conventional ventilation for total ventilatory support in acute respiratory failure. Intensive Care Medicine, 2010, 36, 1371-1379.	3.9	36
229	Effect of Driving Pressure Change During Extracorporeal Membrane Oxygenation in Adults With Acute Respiratory Distress Syndrome: A Randomized Crossover Physiologic Study*. Critical Care Medicine, 2020, 48, 1771-1778.	0.4	36
230	Occult, occult auto-PEEP in status asthmaticus. Critical Care Medicine, 1996, 24, 379-380.	0.4	34
231	Intermittent Warm Blood Cardioplegia. Circulation, 1995, 92, 341-346.	1.6	34
232	Mechanisms affecting gas transport during high-frequency oscillation. Critical Care Medicine, 1984, 12, 713-717.	0.4	33
233	Transgene expression after adenovirus-mediated retransfection of rat lungs is increased and prolonged by transplant immunosuppression. Journal of Thoracic and Cardiovascular Surgery, 1999, 117, 1-7.	0.4	33
234	Bench-to-bedside review: Biotrauma and modulation of the innate immune response. Critical Care, 2005, 9, 280.	2.5	33

#	Article	IF	CITATIONS
235	Role of human neutrophil peptides in the initial interaction between lung epithelial cells and CD4+lymphocytes. Journal of Leukocyte Biology, 2007, 81, 1022-1031.	1.5	33
236	The plasma peptides of ovarian cancer. Clinical Proteomics, 2018, 15, 41.	1.1	33
237	Basic Science in Ventilator-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 599-600.	2.5	32
238	Noninvasive respiratory support following extubation in critically ill adults: a systematic review and network meta-analysis. Intensive Care Medicine, 2022, 48, 137-147.	3.9	32
239	Transtracheal gene transfection of donor lungs prior to organ procurement increases transgene levels at reperfusion and following transplantation. Journal of Heart and Lung Transplantation, 1999, 18, 1181-1188.	0.3	31
240	Ventilator-Induced Lung Injury and Recommendations for Mechanical Ventilation of Patients with ARDS. Seminars in Respiratory and Critical Care Medicine, 2001, 22, 269-280.	0.8	31
241	Pathogenesis of ventilator-induced lung injury: trials and tribulations. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L596-L598.	1.3	31
242	A novel cell culture model for studying ischemia-reperfusion injury in lung transplantation. Journal of Applied Physiology, 2000, 89, 1553-1560.	1.2	30
243	Ventilator-induced lung injury, cytokines, PEEP, and mortality: implications for practice and for clinical trials. Intensive Care Medicine, 2003, 29, 1218-1221.	3.9	30
244	Differential signaling mechanisms of HNPâ€induced ILâ€8 production in human lung epithelial cells and monocytes. Journal of Cellular Physiology, 2008, 214, 820-827.	2.0	30
245	Corticosteroid therapy for critically ill patients with COVID-19: A structured summary of a study protocol for a prospective meta-analysis of randomized trials. Trials, 2020, 21, 734.	0.7	30
246	Direct and indirect bacterial killing functions of neutrophil defensins in lung explants. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L1240-L1247.	1.3	29
247	Intercellular Adhesion Molecule-1 Mediates Cellular Cross-Talk between Parenchymal and Immune Cells after Lipopolysaccharide Neutralization. Journal of Immunology, 2004, 172, 608-616.	0.4	29
248	Protective ventilation of patients with acute respiratory distress syndrome. Critical Care, 2004, 8, 145.	2.5	29
249	Temporal change, reproducibility, and interobserver variability in pressure-volume curves in adults with acute lung injury and acute respiratory distress syndrome. Critical Care Medicine, 2003, 31, 2118-2125.	0.4	28
250	Research in Extracorporeal Life Support. Chest, 2018, 153, 788-791.	0.4	28
251	Practice Patterns and Ethical Considerations in the Management of Venovenous Extracorporeal Membrane Oxygenation Patients: An International Survey*. Critical Care Medicine, 2019, 47, 1346-1355.	0.4	28
252	Warm retrograde cardioplegia. Journal of Thoracic and Cardiovascular Surgery, 1992, 104, 374-380.	0.4	27

15

#	Article	IF	CITATIONS
253	Pulmonary-derived phosphoinositide 3-kinase gamma (PI3Kγ) contributes to ventilator-induced lung injury and edema. Intensive Care Medicine, 2010, 36, 1935-1945.	3.9	27
254	Practice of diagnosis and management of acute respiratory distress syndrome in mainland China: a cross-sectional study. Journal of Thoracic Disease, 2018, 10, 5394-5404.	0.6	27
255	LPS-induced depolymerization of cytoskeleton and its role in TNF-α production by rat pneumocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L606-L615.	1.3	26
256	Transplant immunosuppression increases and prolongs transgene expression following adenoviral-mediated transfection of rat lungs. Journal of Heart and Lung Transplantation, 2000, 19, 984-994.	0.3	26
257	Assessment of patient–ventilator breath contribution during neurally adjusted ventilatory assist. Intensive Care Medicine, 2012, 38, 1224-1232.	3.9	26
258	Acute Cardiac Injury in Coronavirus Disease 2019 and Other Viral Infections—A Systematic Review and Meta-Analysis. Critical Care Medicine, 2021, 49, 1558-1566.	0.4	26
259	High tidal volume mechanical ventilation-induced lung injury in rats is greater after acid instillation than after sepsis-induced acute lung injury, but does not increase systemic inflammation: an experimental study. BMC Anesthesiology, 2011, 11, 26.	0.7	25
260	Altered Profile of Circulating Endothelial-Derived Microparticles in Ventilator-Induced Lung Injury*. Critical Care Medicine, 2015, 43, e551-e559.	0.4	25
261	Happy 50th birthday ARDS!. Intensive Care Medicine, 2016, 42, 637-639.	3.9	25
262	Pathophysiology of COVID-19-associated acute respiratory distress syndrome – Authors' reply. Lancet Respiratory Medicine,the, 2021, 9, e5-e6.	5.2	25
263	Inhibition of exhaled nitric oxide production during sepsis does not prevent lung inflammation. Critical Care Medicine, 1998, 26, 309-314.	0.4	25
264	Effect of Inhaled Furosemide in Acute Asthma. Journal of Asthma, 1998, 35, 89-93.	0.9	24
265	Novel CO2 removal device driven by a renal-replacement system without hemofilter. A first step experimental validation. Anaesthesia, Critical Care & Pain Medicine, 2015, 34, 135-140.	0.6	24
266	Trends in COVID-19-related in-hospital mortality: lessons learned from nationwide samples. Lancet Respiratory Medicine,the, 2021, 9, 322-324.	5.2	24
267	Personalized Ventilation to Multiple Patients Using a Single Ventilator: Description and Proof of Concept. , 2020, 2, e0118.		24
268	Cardiogenic oscillations: A potential mechanism enhancing oxygenation during apneic respiration. Medical Hypotheses, 1982, 8, 393-400.	0.8	23
269	Normocapnia improves cerebral oxygen delivery during conventional oxygen therapy in carbon monoxide–exposed research subjects. Annals of Emergency Medicine, 2002, 40, 611-618.	0.3	23
270	Constant Oxygen Insufflation (COI) in a Ventilatory Failure Model. The American Review of Respiratory Disease, 1988, 138, 630-635.	2.9	22

#	Article	IF	CITATIONS
271	Esophageal and transpulmonary pressure help optimize mechanical ventilation in patients with acute lung injury*. Critical Care Medicine, 2006, 34, 1556-1558.	0.4	22
272	The plasma peptidome. Clinical Proteomics, 2018, 15, 39.	1.1	22
273	ECMO for severe ARDS associated with COVID-19: now we know we can, but should we?. Lancet Respiratory Medicine,the, 2020, 8, 1066-1068.	5.2	22
274	Enabling a learning healthcare system with automated computer protocols that produce replicable and personalized clinician actions. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1330-1344.	2.2	22
275	Ventilation with Negative Airway Pressure Induces a Cytokine Response in Isolated Mouse Lung. Anesthesia and Analgesia, 2002, 94, 1577-1582.	1.1	21
276	Furosemide and Loop Diuretics in Human Asthma. Chest, 1994, 106, 244-249.	0.4	20
277	Risks and Benefits of Ultra–Lung-Protective Invasive Mechanical Ventilation Strategies with a Focus on Extracorporeal Support. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 873-882.	2.5	20
278	Extracorporeal Membrane Oxygenation during Respiratory Pandemics: Past, Present, and Future. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1382-1390.	2.5	20
279	Ventilatory support for acute respiratory failure: new and ongoing pathophysiological, diagnostic and therapeutic developments. Current Opinion in Critical Care, 2010, 16, 1-7.	1.6	19
280	Patterns and Impact of Arterial CO2 Management in Patients With Acute Respiratory Distress Syndrome. Chest, 2020, 158, 1967-1982.	0.4	19
281	Artificial intelligence in intensive care medicine. Intensive Care Medicine, 2021, 47, 147-149.	3.9	19
282	MicroRNA-19b Mediates Lung Epithelial-Mesenchymal Transition via Phosphatidylinositol-3,4,5-Trisphosphate 3-Phosphatase in Response to Mechanical Stretch. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 11-19.	1.4	18
283	Microarray Meta-Analysis Identifies Acute Lung Injury Biomarkers in Donor Lungs That Predict Development of Primary Graft Failure in Recipients. PLoS ONE, 2012, 7, e45506.	1.1	17
284	Intensive Care Unit-Acquired Bacteremia in Mechanically Ventilated Patients: Clinical Features and Outcomes. PLoS ONE, 2013, 8, e83298.	1.1	17
285	Is basic science disappearing from medicine? The decline of biomedical research in the medical literature. FASEB Journal, 2016, 30, 515-518.	0.2	17
286	Non-conventional Techniques of Ventilatory Support. Critical Care Clinics, 1990, 6, 579-603.	1.0	17
287	The plasma peptides of breast versus ovarian cancer. Clinical Proteomics, 2019, 16, 43.	1.1	16
288	The plasma peptides of sepsis. Clinical Proteomics, 2020, 17, 26.	1.1	16

#	Article	IF	CITATIONS
289	Noninvasive respiratory support for acute respiratory failure-high flow nasal cannula oxygen or non-invasive ventilation?. Journal of Thoracic Disease, 2015, 7, 1092-7.	0.6	16
290	Hemodilution reduces early reperfusion injury in an ex vivo rabbit lung preservation model. Annals of Thoracic Surgery, 1994, 57, 731-735.	0.7	15
291	Levels of exhaled nitric oxide before and after surgical and transcatheter device closure of atrial septal defects in children. Journal of Thoracic and Cardiovascular Surgery, 2002, 124, 806-810.	0.4	15
292	Assisted spontaneous breathing during early acute lung injury. Critical Care, 2006, 10, 102.	2.5	15
293	Human neutrophil peptides upregulate expression of COX-2 and endothelin-1 by inducing oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2769-H2774.	1.5	15
294	The physiological underpinnings of life-saving respiratory support. Intensive Care Medicine, 2022, 48, 1274-1286.	3.9	15
295	Mechanical Ventilation Exacerbates Alveolar Macrophage Dysfunction in the Lungs of Ethanol-Fed Rats. Alcoholism: Clinical and Experimental Research, 2005, 29, 1457-1465.	1.4	14
296	Understanding high-frequency oscillation: lessons from the animal kingdom. Intensive Care Medicine, 2007, 33, 1316-1318.	3.9	14
297	Intensive care medicine in 2050: the future of ICU treatments. Intensive Care Medicine, 2017, 43, 1401-1402.	3.9	14
298	First tidal volume greater than 8ÂmL/kg is associated with increased mortality in complicated influenza infection with acute respiratory distress syndrome. Journal of the Formosan Medical Association, 2019, 118, 378-385.	0.8	14
299	Hot new therapy for sepsis and the acute respiratory distress syndrome. Journal of Clinical Investigation, 2002, 110, 737-739.	3.9	14
300	Current concepts of protective ventilation during general anaesthesia. Swiss Medical Weekly, 2015, 145, w14211.	0.8	14
301	Improving Outcomes in Critically III Patients. JAMA - Journal of the American Medical Association, 2009, 302, 2030.	3.8	13
302	Physiologic and Biologic Characteristics of Three Experimental Models of Acute Lung Injury in Rats. Anesthesia and Analgesia, 2011, 112, 1139-1146.	1.1	13
303	Lung protection during non-invasive synchronized assist versus volume control in rabbits. Critical Care, 2014, 18, R22.	2.5	13
304	Assessment of patient-ventilator breath contribution during neurally adjusted ventilatory assist in patients with acute respiratory failure. Critical Care, 2015, 19, 43.	2.5	13
305	Multivariable fractional polynomial interaction to investigate continuous effect modifiers in a meta-analysis on higher versus lower PEEP for patients with ARDS. BMJ Open, 2016, 6, e011148.	0.8	13
306	Should basic science matter to clinicians?. Lancet, The, 2018, 391, 410-412.	6.3	13

#	Article	IF	CITATIONS
307	Pulmonary phagocyte-derived NPY controls the pathology of severe influenza virus infection. Nature Microbiology, 2019, 4, 258-268.	5.9	13
308	Protective effects of adenosine A2A receptor agonist in ventilator-induced lung injury in rats. Critical Care Medicine, 2009, 37, 2235-2241.	0.4	12
309	Ventilator-induced lung injury. Critical Care Medicine, 1999, 27, 1669-1671.	0.4	12
310	Neurally Adjusted Ventilatory Assist and Pressure Support Ventilation in Small Species and the Impact of Instrumental Dead Space. Neonatology, 2010, 97, 279-285.	0.9	11
311	The Effect of Pre-Exposure to 0.12 ppm of Ozone on Exercise-Induced Asthma. Chest, 1994, 106, 1077-1082.	0.4	10
312	The ICU outreach team. Journal of Critical Care, 2003, 18, 95-106.	1.0	10
313	A primer on data safety monitoring boards: mission, methods, and controversies. Intensive Care Medicine, 2007, 33, 1815-1818.	3.9	10
314	Neural control of ventilation prevents both over-distension and de-recruitment of experimentally injured lungs. Respiratory Physiology and Neurobiology, 2017, 237, 57-67.	0.7	10
315	Prognostic factors for development of acute respiratory distress syndrome following traumatic injury: a systematic review and meta-analysis. European Respiratory Journal, 2022, 59, 2100857.	3.1	10
316	Physiology Is Vital to Precision Medicine in Acute Respiratory Distress Syndrome and Sepsis. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 14-16.	2.5	10
317	Renin-Angiotensin System Pathway Therapeutics Associated With Improved Outcomes in Males Hospitalized With COVID-19*. Critical Care Medicine, 2022, 50, 1306-1317.	0.4	10
318	Handedness and Sleep Apnea. Chest, 1993, 103, 1860-1862.	0.4	9
319	From bench to bedside: bacterial growth and cytokines. Critical Care, 2002, 6, 4.	2.5	9
320	The PANDORA Study: Prevalence and Outcome of Acute Hypoxemic Respiratory Failure in the Pre-COVID-19 Era. , 2022, 4, e0684.		9
321	Control of expiratory duration by arterial CO2 oscillations in vagotomized dogs. Respiration Physiology, 1990, 79, 45-55.	2.8	8
322	Critical care medicine in the 21st century: from CPR to PCR. Critical Care, 2001, 5, 125.	2.5	8
323	Predicting length of stay out of hospital following lung resection using preoperative health status measures. Quality of Life Research, 2003, 12, 645-654.	1.5	8
324	Feasibility of neurally adjusted positive end-expiratory pressure in rabbits with early experimental lung injury. BMC Anesthesiology, 2015, 15, 124.	0.7	8

#	Article	IF	CITATIONS
325	Precision medicine for cell therapy in acute respiratory distress syndrome. Lancet Respiratory Medicine,the, 2019, 7, e13.	5.2	8
326	We've never seen a patient with ARDS!. Intensive Care Medicine, 2020, 46, 2133-2135.	3.9	8
327	Media Portrayals of Outcomes After Extracorporeal Membrane Oxygenation. JAMA Internal Medicine, 2021, 181, 391.	2.6	8
328	Biotrauma during ultra-low tidal volume ventilation and venoarterial extracorporeal membrane oxygenation in cardiogenic shock: a randomized crossover clinical trial. Annals of Intensive Care, 2021, 11, 132.	2.2	8
329	Effect of methylprednisolone on angiogenesis in syngeneic rat tracheal grafts. Annals of Thoracic Surgery, 1994, 57, 652-656.	0.7	7
330	The PRESET-Score: the extrapulmonary predictive survival model for extracorporeal membrane oxygenation in severe acute respiratory distress syndrome. Journal of Thoracic Disease, 2018, 10, S2040-S2044.	0.6	7
331	A physiology-based mathematical model for the selection of appropriate ventilator controls for lung and diaphragm protection. Journal of Clinical Monitoring and Computing, 2021, 35, 363-378.	0.7	7
332	Study protocol for a multicentre, prospective cohort study of the association of angiotensin II type 1 receptor blockers on outcomes of coronavirus infection. BMJ Open, 2020, 10, e040768.	0.8	7
333	Prolonged lung allograft survival with a short course of FK 506. Journal of Thoracic and Cardiovascular Surgery, 1993, 105, 1-8.	0.4	6
334	Monitoring and oversight in critical care research. Critical Care, 2004, 8, 403.	2.5	6
335	Acute Hypoxemic Respiratory Failure and ARDS. , 2016, , 1740-1760.e7.		6
336	Should Patients With Acute Respiratory Distress Syndrome on Venovenous Extracorporeal Membrane Oxygenation Have Ventilatory Support Reduced to the Lowest Tolerable Settings? Yes. Critical Care Medicine, 2019, 47, 1143-1146.	0.4	6
337	A Gas-Powered, Patient-Responsive Automatic Resuscitator for Use in Acute Respiratory Failure: A Bench and Experimental Study. Respiratory Care, 2021, 66, 366-377.	0.8	6
338	Synergistic Effect of Static Compliance and D-dimers to Predict Outcome of Patients with COVID-19-ARDS: A Prospective Multicenter Study. Biomedicines, 2021, 9, 1228.	1.4	6
339	Hot new therapy for sepsis and the acute respiratory distress syndrome. Journal of Clinical Investigation, 2002, 110, 737-739.	3.9	6
340	Positive End-Expiratory Pressure in Acute Respiratory Distress Syndrome. Critical Care Medicine, 2014, 42, 448-450.	0.4	5
341	Tsr Chemoreceptor Interacts With IL-8 Provoking E. coli Transmigration Across Human Lung Epithelial Cells. Scientific Reports, 2016, 6, 31087.	1.6	5
342	Distinctive Roles and Mechanisms of Human Neutrophil Peptides in Experimental Sepsis and Acute Respiratory Distress Syndrome. Critical Care Medicine, 2018, 46, e921-e927.	0.4	5

#	ARTICLE	IF	CITATIONS
343	Validity of Empirical Estimates of the Ratio of Dead Space to Tidal Volume in ARDS. Respiratory Care, 2021, 66, 559-565.	0.8	5
344	Ventilator-induced lung injury: from the bench to the bedside. , 2006, , 357-366.		5
345	Increased effort during partial ventilatory support is not associated with lung damage in experimental acute lung injury. Intensive Care Medicine Experimental, 2019, 7, 60.	0.9	5
346	Searching for the Optimal PEEP in Patients Without ARDS. JAMA - Journal of the American Medical Association, 2020, 324, 2490.	3.8	4
347	In Global Health Research, Is It Legitimate To Stop Clinical Trials Early on Account of Their Opportunity Costs?. PLoS Medicine, 2009, 6, e1000071.	3.9	4
348	AN ODE TO VENTILATOR MANAGEMENT. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 2001-2001.	2.5	3
349	Why Partial Liquid Ventilation Did Not Fulfill Its Promise. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 615a-616.	2.5	3
350	Year in review 2012: Critical Care - respirology. Critical Care, 2013, 17, 249.	2.5	3
351	What have we learned ventilating COVID-19 patients?. Intensive Care Medicine, 2020, 46, 2458-2460.	3.9	3
352	Acute respiratory failure and mechanical ventilation in the context of the COVID-19 pandemic: why a special issue in ICM?. Intensive Care Medicine, 2020, 46, 2131-2132.	3.9	3
353	A simulation model for determination of the economic production rate of the auto analyzer system. Clinical Biochemistry, 1975, 8, 87-95.	0.8	2
354	High Frequency Oscillatory Ventilation Using Tidal Volumes Smaller than the Anatomical Dead Space. International Anesthesiology Clinics, 1983, 21, 161-182.	0.3	2
355	A short course of FK506 can induce limited donor-specific graft acceptance. Annals of Thoracic Surgery, 1994, 58, 496-501.	0.7	2
356	Outcome from Acute Repsiratory Distress Syndrome: Is It Really Improving?. Canadian Respiratory Journal, 1996, 3, 417-421.	0.8	2
357	Plateau Pressures in the ARDSnet Protocol: Cause of Injury or Indication of Disease?. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 100-101.	2.5	2
358	Enlarging and Protecting an Aerated Lung. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 463-464.	2.5	2
359	Year in review 2010: Critical Care - respirology. Critical Care, 2011, 15, 240.	2.5	2

360 Invasive Mechanical Ventilation. , 2012, , 406-430.

#	Article	IF	CITATIONS
361	Ventilation in Acute Respiratory Distress Syndrome. Critical Care Medicine, 2014, 42, 1581-1582.	0.4	2
362	COVID-19 ARDS: getting ventilation right – Authors' reply. Lancet, The, 2022, 399, 22-23.	6.3	2
363	Lung-Protective Ventilation Attenuates Mechanical Injury While Hypercapnia Attenuates Biological Injury in a Rat Model of Ventilator-Associated Lung Injury. Frontiers in Physiology, 2022, 13, 814968.	1.3	2
364	Year in review 2005: Critical Care - Respirology: mechanical ventilation, infection, monitoring, and education. Critical Care, 2006, 10, 217.	2.5	1
365	Negative Studies Deserve More Attention. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1415-1415.	2.5	1
366	Reply to the comment by Dr. Jardin on "Ventilator-induced lung injury: from the bench to the bedside― Intensive Care Medicine, 2006, 32, 1279-1280.	3.9	1
367	William John Sibbald: in memoriam. Intensive Care Medicine, 2006, 32, 1945-1946.	3.9	1
368	Year in review 2013: Critical Care- respirology. Critical Care, 2014, 18, 577.	2.5	1
369	Mechanical Ventilation in Acute Respiratory Distress Syndrome. Anesthesiology, 2019, 130, 680-682.	1.3	1
370	Acute Hypoxemic Respiratory Failure in Children at the Start of COVID-19 Outbreak: A Nationwide Experience. Journal of Clinical Medicine, 2021, 10, 4301.	1.0	1
371	Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. , 2020, 46, 586.		1
372	Cytokine Release. , 2008, , 216-224.		1
373	The consequences of neglecting to collect multisectoral data to monitor the COVID-19 pandemic. Cmaj, 2021, 193, E1600-E1600.	0.9	1
374	Commenting on the ACCP Consensus Conference: Mechanical Ventilation. Chest, 1994, 106, 1629-1630.	0.4	0
375	Cellular effects of ventilator-induced lung injury. Current Opinion in Critical Care, 2000, 6, 71-74.	1.6	Ο
376	Mechanical ventilation and the immune response. Intensive Care Medicine, 2002, 28, 1367-1367.	3.9	0
377	Year in review in Critical Care, 2003 and 2004: respirology and critical care. Critical Care, 2005, 9, 517.	2.5	Ο
378	Different pathogens at different time points in pneumonia: Do potential anticoagulant therapies need to be time—and species—tailored?. Critical Care Medicine, 2006, 34, 2510-2511.	0.4	0

#	Article	IF	CITATIONS
379	Pressure Increase Due to Hydrostatic Pressure of Perfluorocarbon. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1046a-1047.	2.5	0
380	Ventilator-Induced Lung Injury. , 2008, , 42-50.		0
381	Development of Clinical Trial Agreement Principles. Drug Information Journal, 2010, 44, 111-117.	0.5	0
382	Giants in Chest Medicine. Chest, 2018, 153, 14-15.	0.4	0
383	Reply to Morales-Quinteros et al.: Precision Medicine for Extracorporeal CO2 Removal for Acute Respiratory Distress Syndrome: CO2 Physiological Considerations. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1091-1092.	2.5	0
384	Post Hoc Bayesian Analyses—Reply. JAMA - Journal of the American Medical Association, 2019, 321, 1632.	3.8	0
385	Biotrauma: Signal Transduction and Gene Expression in the Lung. , 2001, , 289-325.		0
386	Invasive Mechanical Ventilation. , 2008, , 231-256.		0
387	Ventilator-Induced Lung Injury. , 2008, , 615-623.		0
388	Ventilator-induced lung injury, cytokines, PEEP, and mortality: implications for practice and for clinical trials. , 2012, , 347-350.		0
389	Heat Shock Response in Sepsis. Critical Care Medicine, 1995, 23, 981.	0.4	0
390	Reply: High-Flow Oxygen Therapy for Severe Hypoxemia: Moving Towards a More Inclusive Definition of ARDS. American Journal of Respiratory and Critical Care Medicine, 2022, , .	2.5	0