Lifeng Yan

List of Publications by Citations

Source: https://exaly.com/author-pdf/5297599/lifeng-yan-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

205 8,298 42 86 g-index

224 9,380 5.8 6.65 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
205	Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. <i>Carbon</i> , 2010 , 48, 1146-1152	10.4	816
204	Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. <i>Advanced Materials</i> , 2011 , 23, 5679-83	24	755
203	In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. <i>Nanoscale</i> , 2011 , 3, 3132-7	7.7	602
202	Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 19885-19890	3.8	413
201	Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. <i>Carbohydrate Polymers</i> , 2011 , 83, 653-658	10.3	410
200	Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. <i>Nanoscale</i> , 2010 , 2, 559-63	7.7	292
199	Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles. <i>ACS Nano</i> , 2010 , 4, 3033-8	16.7	243
198	Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. <i>Biomaterials</i> , 2008 , 29, 4348-55	15.6	217
197	Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2014 , 2, 2765	13	192
196	Cellulose/graphite oxide composite films with improved mechanical properties over a wide range of temperature. <i>Carbohydrate Polymers</i> , 2011 , 83, 966-972	10.3	118
195	Polypeptide-Conjugated Second Near-Infrared Organic Fluorophore for Image-Guided Photothermal Therapy. <i>ACS Nano</i> , 2019 , 13, 3691-3702	16.7	112
194	Dissolving of cellulose in PEG/NaOH aqueous solution. <i>Cellulose</i> , 2008 , 15, 789-796	5.5	106
193	Supramolecular Hydrogel of Chitosan in the Presence of Graphene Oxide Nanosheets as 2D Cross-Linkers. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 296-300	8.3	98
192	Synthesis of lignin-poly(N-methylaniline)-reduced graphene oxide hydrogel for organic dye and lead ions removal. <i>Journal of Bioresources and Bioproducts</i> , 2020 , 5, 204-210	18.7	97
191	Tunable Thermosensitivity of Biodegradable Polymer Micelles of Poly(Etaprolactone) and Polyphosphoester Block Copolymers. <i>Macromolecules</i> , 2009 , 42, 3026-3032	5.5	91
190	Production of Levulinic Acid from Bagasse and Paddy Straw by Liquefaction in the Presence of Hydrochloride Acid. <i>Clean - Soil, Air, Water</i> , 2008 , 36, 158-163	1.6	86
189	CFD studies on biomass thermochemical conversion. <i>International Journal of Molecular Sciences</i> , 2008 , 9, 1108-30	6.3	81

188	Amino-grafted graphene as a stable and metal-free solid basic catalyst. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7456		78	
187	Preparation of a macroporous flexible three dimensional graphene sponge using an ice-template as the anode material for microbial fuel cells. <i>RSC Advances</i> , 2014 , 4, 21619-21624	3.7	75	
186	Synthesis of disulfide-cross-linked polypeptide nanogel conjugated with a near-infrared fluorescence probe for direct imaging of reduction-induced drug release. <i>ACS Applied Materials</i> & Amp; Interfaces, 2012, 4, 5662-72	9.5	73	
185	pH-Triggered Polypeptides Nanoparticles for Efficient BODIPY Imaging-Guided Near Infrared Photodynamic Therapy. <i>ACS Applied Materials & Distriction</i> , 1988-90 (2016), 8, 8980-90	9.5	71	
184	Synthesis and Flocculation Behavior of Cationic Cellulose Prepared in a NaOH/Urea Aqueous Solution. <i>Clean - Soil, Air, Water</i> , 2009 , 37, 39-44	1.6	70	
183	Biodegradable polycation and plasmid DNA multilayer film for prolonged gene delivery to mouse osteoblasts. <i>Biomaterials</i> , 2008 , 29, 733-41	15.6	70	
182	Association of the maternal MTHFR C677T polymorphism with susceptibility to neural tube defects in offsprings: evidence from 25 case-control studies. <i>PLoS ONE</i> , 2012 , 7, e41689	3.7	67	
181	Disulfide core cross-linked PEGylated polypeptide nanogel prepared by a one-step ring opening copolymerization of N-carboxyanhydrides for drug delivery. <i>Macromolecular Bioscience</i> , 2011 , 11, 962-9	5.5	67	
180	Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution. <i>Carbohydrate Polymers</i> , 2010 , 79, 614-619	10.3	67	
179	An inorganic-organic double network hydrogel of graphene and polymer. <i>Nanoscale</i> , 2013 , 5, 6034-9	7.7	66	
178	Study of the kinetics of the pancake-to-brush transition of poly(N-isopropylacrylamide) chains. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 22603-7	3.4	65	
177	Galactose targeted pH-responsive copolymer conjugated with near infrared fluorescence probe for imaging of intelligent drug delivery. <i>ACS Applied Materials & Description of the Interfaces</i> , 2015 , 7, 2104-15	9.5	62	
176	A new insight into the adsorption of bovine serum albumin onto porous polyethylene membrane by zeta potential measurements, FTIR analyses, and AFM observations. <i>Journal of Colloid and Interface Science</i> , 2003 , 262, 342-50	9.3	60	
175	Synthesis of PEG-Armed and Polyphosphoester Core-Cross-Linked Nanogel by One-Step Ring-Opening Polymerization. <i>Macromolecules</i> , 2009 , 42, 893-896	5.5	57	
174	Graft copolymerization of 2-methacryloyloxyethyl phosphorylcholine to cellulose in homogeneous media using atom transfer radical polymerization for providing new hemocompatible coating materials. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 3306-3313	2.5	57	
173	Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries. <i>Nanoscale</i> , 2012 , 4, 2124-9	7.7	56	
172	Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells. <i>Nano Energy</i> , 2017 , 39, 470-477	17.1	54	
171	Biodegradable vesicular nanocarriers based on poly(e-caprolactone)-block-poly(ethyl ethylene phosphate) for drug delivery. <i>Polymer</i> , 2009 , 50, 5048-5054	3.9	53	

170	A reduction-responsive polypeptide nanogel encapsulating NIR photosensitizer for imaging guided photodynamic therapy. <i>Polymer Chemistry</i> , 2016 , 7, 951-957	4.9	52
169	Microscale analysis of in vitro anaerobic degradation of lignocellulosic wastes by rumen microorganisms. <i>Environmental Science & Environmental Scienc</i>	10.3	52
168	Study of the kinetics of mushroom-to-brush transition of charged polymer chains. <i>Polymer</i> , 2006 , 47, 3157-3163	3.9	51
167	Preparation of Flexible, Highly Transparent, Cross-Linked Cellulose Thin Film with High Mechanical Strength and Low Coefficient of Thermal Expansion. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 1474-1479	8.3	49
166	Seminal superoxide dismutase activity and its relationship with semen quality and SOD gene polymorphism. <i>Journal of Assisted Reproduction and Genetics</i> , 2014 , 31, 549-54	3.4	45
165	Near infrared imaging-guided photodynamic therapy under an extremely low energy of light by galactose targeted amphiphilic polypeptide micelle encapsulating BODIPY-Br. <i>Biomaterials Science</i> , 2016 , 4, 1638-1645	7.4	44
164	NIR imaging-guided combined photodynamic therapy and chemotherapy by a pH-responsive amphiphilic polypeptide prodrug. <i>Biomaterials Science</i> , 2017 , 5, 313-321	7.4	42
163	Surfactant-free synthesis of amphiphilic diblock copolymer in aqueous phase by a self-stability process. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 3098-3107	2.5	41
162	Effect of pH on gelatin self-association investigated by laser light scattering and atomic force microscopy. <i>Polymer International</i> , 2002 , 51, 233-238	3.3	41
161	Synthesis of Microporous Cationic Hydrogel of Hydroxypropyl Cellulose (HPC) and its Application on Anionic Dye Removal. <i>Clean - Soil, Air, Water</i> , 2009 , 37, 392-398	1.6	40
160	Direct visualization of straw cell walls by AFM. Macromolecular Bioscience, 2004, 4, 112-8	5.5	40
159	MnCo2S4 nanoparticles anchored to N- and S-codoped 3D graphene as a prominent electrode for asymmetric supercapacitors. <i>Carbon</i> , 2019 , 146, 420-429	10.4	40
158	Three dimensional Ni(OH)2/rGO hydrogel as binder-free electrode for asymmetric supercapacitor. Journal of Alloys and Compounds, 2018 , 735, 2428-2435	5.7	39
157	Free-standing dried foam films of graphene oxide for humidity sensing. <i>Sensors and Actuators B: Chemical</i> , 2015 , 215, 316-322	8.5	38
156	Reduced graphene oxide hydrogel film with a continuous ion transport network for supercapacitors. <i>Nanoscale</i> , 2015 , 7, 3712-8	7.7	37
155	Degradation of Cellulose to Organic Acids in its Homogeneous Alkaline Aqueous Solution. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 897-901	8.3	36
154	Dissolving cellulose in a NaOH/thiourea aqueous solution: a topochemical investigation. <i>Macromolecular Bioscience</i> , 2007 , 7, 1139-48	5.5	36
153	Centimeter-sized dried foam films of graphene: preparation, mechanical and electronic properties. <i>Advanced Materials</i> , 2012 , 24, 6229-33	24	35

(2019-2018)

152	Transparent Wood Film Incorporating Carbon Dots as Encapsulating Material for White Light-Emitting Diodes. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 9314-9323	8.3	34	
151	One-step synthesis of pegylated cationic nanogels of poly(N,N?-dimethylaminoethyl methacrylate) in aqueous solution via self-stabilizing micelles using an amphiphilic macroRAFT agent. <i>Polymer</i> , 2010 , 51, 2161-2167	3.9	34	
150	High-Efficiency Cryo-Thermocells Assembled with Anisotropic Holey Graphene Aerogel Electrodes and a Eutectic Redox Electrolyte. <i>Advanced Materials</i> , 2019 , 31, e1901403	24	33	
149	Deep eutectic solvent (DES) as both solvent and catalyst for oxidation of furfural to maleic acid and fumaric acid. <i>Green Chemistry</i> , 2019 , 21, 1075-1079	10	31	
148	Oxygen self-sufficient fluorinated polypeptide nanoparticles for NIR imaging-guided enhanced photodynamic therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 2323-2331	7.3	31	
147	Directional synthesis of ethylbenzene through catalytic transformation of lignin. <i>Bioresource Technology</i> , 2013 , 143, 59-67	11	31	
146	[a]-Phenanthrene-Fused BF Azadipyrromethene (AzaBODIPY) Dyes as Bright Near-Infrared Fluorophores. <i>Journal of Organic Chemistry</i> , 2017 , 82, 10341-10349	4.2	30	
145	Electrochemical reduction of bulk graphene oxide materials. <i>RSC Advances</i> , 2016 , 6, 80106-80113	3.7	29	
144	Asymmetric Supercapacitors Assembled by Dual Spinel [email[protected] Nanocomposites as Electrodes. <i>ACS Applied Energy Materials</i> , 2018 , 1, 3206-3215	6.1	29	
143	Synthesis of achiral PEG-PANI rod-coil block copolymers and their helical superstructures. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 12-20	2.5	29	
142	Dissolution of highly molecular weight cellulose isolated from wheat straw in deep eutectic solvent of Choline/l-Lysine hydrochloride. <i>Green Energy and Environment</i> , 2020 , 5, 232-239	5.7	28	
141	In situ formation of a renewable cellulose hydrogel electrolyte for high-performance flexible all-solid-state asymmetric supercapacitors. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 3109-3115	5.8	27	
140	PEG conjugated BODIPY-Br as macro-photosensitizer for efficient imaging-guided photodynamic therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 753-762	7:3	27	
139	Synthesis of polypeptide conjugated with near infrared fluorescence probe and doxorubicin for pH-responsive and image-guided drug delivery. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22290		26	
138	Genetic variants in telomerase reverse transcriptase (TERT) and telomerase-associated protein 1 (TEP1) and the risk of male infertility. <i>Gene</i> , 2014 , 534, 139-43	3.8	25	
137	Efficient Synthesis of Poly(acrylic acid) in Aqueous Solution via a RAFT Process. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2010 , 47, 445-451	2.2	25	
136	Interpolymer complex polyampholytic hydrogel of chitosan and carboxymethyl cellulose (CMC): synthesis and ion effect. <i>Polymer International</i> , 2001 , 50, 1370-1374	3.3	25	
135	One-pot degradation of cellulose into carbon dots and organic acids in its homogeneous aqueous solution. <i>Green Energy and Environment</i> , 2019 , 4, 391-399	5.7	25	

134	Functional Polymer Nanocarriers for Photodynamic Therapy. <i>Pharmaceuticals</i> , 2018 , 11,	5.2	25
133	Preparation of organic/inorganic nanocomposites with polyacrylamide (PAM) hydrogel by 60Co [] irradiation. <i>Materials Research Bulletin</i> , 2000 , 35, 807-812	5.1	24
132	Near infrared fluorescence probe and galactose conjugated amphiphilic copolymer for bioimaging of HepG2 cells and endocytosis. <i>Polymer Chemistry</i> , 2013 , 4, 4442	4.9	23
131	Disulfide Cross-Linked Polypeptide Nanogel Conjugated with a Fluorescent Probe as a Potential Image-Guided Drug-Delivery Agent. <i>Macromolecular Chemistry and Physics</i> , 2013 , 214, 578-588	2.6	23
130	Adsorption of polymeric micelles and vesicles on a surface investigated by quartz crystal microbalance. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 21055-9	3.4	23
129	An amphiphilic block copolymer conjugated with carborane and a NIR fluorescent probe for potential imaging-guided BNCT therapy. <i>Polymer Chemistry</i> , 2016 , 7, 4411-4418	4.9	22
128	Solvent-free Synthesis of Cellulose Acetate by Solid Superacid Catalysis. <i>Journal of Polymer Research</i> , 2007 , 13, 375-378	2.7	22
127	A high-voltage quasi-solid-state flexible supercapacitor with a wide operational temperature range based on a low-cost "water-in-salt" hydrogel electrolyte. <i>Nanoscale</i> , 2021 , 13, 3010-3018	7.7	22
126	Metal-free transparent luminescent cellulose films. <i>Cellulose</i> , 2015 , 22, 729-736	5.5	21
125	Novel ultrasmall multifunctional nanodots for dual-modal MR/NIR-II imaging-guided photothermal therapy. <i>Biomaterials</i> , 2020 , 256, 120219	15.6	21
124	Ultra-pH-sensitive polypeptide micelles with large fluorescence off/on ratio in near infrared range. <i>Polymer Chemistry</i> , 2017 , 8, 1028-1038	4.9	20
123	Hydrogenated Graphene as Metal-free Catalyst for Fenton-like Reaction. <i>Chinese Journal of Chemical Physics</i> , 2012 , 25, 335-338	0.9	19
122	High Singlet Oxygen Yield Photosensitizer Based Polypeptide Nanoparticles for Low-Power Near-Infrared Light Imaging-Guided Photodynamic Therapy. <i>Bioconjugate Chemistry</i> , 2018 , 29, 3441-345	6.3	19
121	A facile one-pot strategy for preparation of small polymer nanoparticles by self-crosslinking of amphiphilic block copolymers containing acyl azide groups in aqueous media. <i>Soft Matter</i> , 2011 , 7, 3956	3.6	18
120	Acidity-triggered TAT-presenting nanocarriers augment tumor retention and nuclear translocation of drugs. <i>Nano Research</i> , 2018 , 11, 5716-5734	10	18
119	Synthesis and self-assembly study of two-armed polymers containing crown ether core. <i>Polymer</i> , 2002 , 43, 3131-3137	3.9	17
118	Preparation of poly(methyl methacrylate-co-maleic anhydride)/SiO2?TiO2 hybrid materials and their thermo- and photodegradation behaviors. <i>Journal of Applied Polymer Science</i> , 2005 , 97, 1714-1724	2.9	17
117	Three-dimensional reduced graphene oxide architecture embedded palladium nanoparticles as highly active catalyst for the SuzukiMiyaura coupling reaction. <i>Materials Chemistry and Physics</i> , 2014 , 148, 103-109	4.4	16

(2006-2013)

116	Polymorphisms in double-strand breaks repair genes are associated with impaired fertility in Chinese population. <i>Reproduction</i> , 2013 , 145, 463-70	3.8	16	
115	Bayberry tannin directed assembly of a bifunctional graphene aerogel for simultaneous solar steam generation and marine uranium extraction. <i>Nanoscale</i> , 2021 , 13, 5419-5428	7.7	16	
114	Surfactant-free synthesis of amphiphilic copolymer of poly(styrene-co-acrylamide) in aqueous emulsion with the assistance of ultrasound. <i>Polymers for Advanced Technologies</i> , 2008 , 19, 221-228	3.2	15	
113	Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution. <i>Applied Surface Science</i> , 2008 , 254, 4191-4200	6.7	15	
112	Lower critical solution temperature of linear PNIPA obtained from a Yukawa potential of polymer chains. <i>Journal of Applied Polymer Science</i> , 2000 , 78, 1971-1976	2.9	15	
111	Self-Healing Organic Fluorophore of Cyanine-Conjugated Amphiphilic Polypeptide for Near-Infrared Photostable Bioimaging. <i>ACS Applied Materials & Discrete Seas</i> , 2018, 10, 14517-14530	9.5	14	
110	CFD modeling of a fluidized bed sewage sludge gasifier for syngas. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2008 , 3, 161-170	1.3	14	
109	Thermal Denaturation of Plasmid DNA Observed by Atomic Force Microscopy. <i>Japanese Journal of Applied Physics</i> , 2002 , 41, 7556-7559	1.4	14	
108	Ternary PtFeCo alloys on graphene with high electrocatalytic activities for methanol oxidation. <i>Nanoscale</i> , 2020 , 12, 9824-9832	7.7	14	
107	Fast Disassembly of Lignocellulosic Biomass to Lignin and Sugars by Molten Salt Hydrate at Low Temperature for Overall Biorefinery. <i>ACS Omega</i> , 2018 , 3, 2984-2993	3.9	13	
106	Oxygen Self-Sufficient Amphiphilic Polypeptide Nanoparticles Encapsulating BODIPY for Potential Near Infrared Imaging-guided Photodynamic Therapy at Low Energy. <i>Nanotheranostics</i> , 2018 , 2, 59-69	5.6	13	
105	Homogeneously Synchronous Degradation of Chitin into Carbon Dots and Organic Acids in Aqueous Solution. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 18476-18482	8.3	13	
104	Synthesis and Optical Properties of Novel Nickel Disulfide Dendritic Nanostructures. <i>Chemistry Letters</i> , 2004 , 33, 830-831	1.7	13	
103	Sharp pH-responsive mannose prodrug polypeptide nanoparticles encapsulating a photosensitizer for enhanced near infrared imaging-guided photodynamic therapy. <i>Journal of Materials Chemistry B</i> , 2019, 7, 6770-6777	7.3	13	
102	pHe- and glutathione-stepwise-responsive polypeptide nanogel for smart and efficient drug delivery. <i>Journal of Materials Science</i> , 2018 , 53, 14933-14943	4.3	12	
101	Fractal aggregation of DNA after thermal denaturation. <i>Chaos, Solitons and Fractals</i> , 2004 , 20, 877-881	9.3	12	
100	Catalytic oxidation of lignin to dicarboxylic acid over the CuFeS2 nanoparticle catalyst. <i>Green Processing and Synthesis</i> , 2018 , 7, 306-315	3.9	11	
99	Emulsifier-free synthesis and self-assembly of an amphiphilic poly(styrene-co-acrylic acid) copolymer. <i>Journal of Applied Polymer Science</i> , 2006 , 100, 3718-3726	2.9	11	

98	Emulsifier-free ultrasonic emulsion copolymerization of styrene with acrylic acid in water. <i>Green Chemistry</i> , 2004 , 6, 99	10	11
97	Alignment behaviour of liquid crystals on ethyl cellulose films with banded-texture structure. <i>Polymer International</i> , 2003 , 52, 265-268	3.3	11
96	Folic acid targeted pH-responsive amphiphilic polymer nanoparticles conjugated with near infrared fluorescence probe for imaging-guided drug delivery. <i>RSC Advances</i> , 2016 , 6, 40312-40322	3.7	11
95	Na2MoO4 as both etcher for three-dimensional holey graphene hydrogel and pseudo-capacitive feedstock for asymmetric supercapacitors. <i>Journal of Alloys and Compounds</i> , 2019 , 780, 55-64	5.7	11
94	In Situ Formation of "Dimethyl Sulfoxide/Water-in-Salt"-Based Chitosan Hydrogel Electrolyte for Advanced All-Solid-State Supercapacitors. <i>ChemSusChem</i> , 2021 , 14, 632-641	8.3	11
93	Multi-dimensional Pt/Ni(OH)2/nitrogen-doped graphene nanocomposites with low platinum content for methanol oxidation reaction with highly catalytic performance. <i>Chemical Engineering Journal</i> , 2021 , 421, 127786	14.7	11
92	Investigation of the in vivo integrity of polymeric micelles via large Stokes shift fluorophore-based FRET. <i>Journal of Controlled Release</i> , 2020 , 324, 47-54	11.7	10
91	pH-Sensitive Polypeptide Conjugated with Carborane Clusters and Cyanine for NIR Bioimaging and Multi-Therapies. <i>Macromolecular Research</i> , 2018 , 26, 270-277	1.9	10
90	Reduction-sensitive polypeptide nanogel conjugated BODIPY-Br for NIR imaging-guided chem/photodynamic therapy at low light and drug dose. <i>Materials Science and Engineering C</i> , 2018 , 92, 745-756	8.3	10
89	pH-responsive amphiphilic block copolymer prodrug conjugated near infrared fluorescence probe. <i>RSC Advances</i> , 2014 , 4, 28186	3.7	10
88	Genetic variants in nitric oxide synthase genes and the risk of male infertility in a Chinese population: a case-control study. <i>PLoS ONE</i> , 2014 , 9, e115190	3.7	10
87	Preparation of cationic waste paper and its application in poisonous dye removal. <i>Water Science and Technology</i> , 2013 , 67, 2560-7	2.2	10
86	AN ELEMENTAL AND LEAD-ISOTOPIC STUDY ON BRONZE HELMETS FROM ROYAL TOMB NO. 1004 IN YIN RUINS. <i>Archaeometry</i> , 2010 , 52, 1002	1.6	10
85	Thermogelling of highly branched poly(N-isopropylacrylamide). <i>Journal of Applied Polymer Science</i> , 2010 , 118, 3391-3399	2.9	10
84	Ethyl cellulose films as alignment layers for liquid crystals. <i>Journal of Applied Polymer Science</i> , 2001 , 82, 2770-2774	2.9	10
83	Organic fluorescent nanoparticles with NIR-II emission for bioimaging and therapy. <i>Biomedical Materials (Bristol)</i> , 2021 , 16, 022001	3.5	10
82	pH-Triggered Disaggregation-Induced Emission (DIE) probe for sensoring minor-pH changes in near infrared fluorescence region. <i>Talanta</i> , 2017 , 170, 185-192	6.2	9
81	Polypeptide-based artificial erythrocytes conjugated with near infrared photosensitizers for imaging-guided photodynamic therapy. <i>Journal of Materials Science</i> , 2018 , 53, 9368-9381	4.3	9

(2008-2018)

80	pH-Responsive dye with dual-state emission in both visible and near infrared regions. <i>Science China Chemistry</i> , 2018 , 61, 863-870	7.9	9
79	8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish. <i>Experimental Cell Research</i> , 2013 , 319, 2954-63	4.2	9
78	Redox-responsive prodrug-like PEGylated macrophotosensitizer nanoparticles for enhanced near-infrared imaging-guided photodynamic therapy. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2019 , 135, 25-35	5.7	9
77	Glutathione Triggered Near Infrared Fluorescence Imaging-Guided Chemotherapy by Cyanine Conjugated Polypeptide. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 4208-4218	5.5	9
76	Carborane and cyanine conjugated galactose targeted amphiphilic copolymers for potential near infrared imaging-guided boron neutron capture therapy (BNCT). <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2018 , 67, 720-726	3	8
75	Isolation of highly purity cellulose from wheat straw using a modified aqueous biphasic system. <i>Frontiers of Chemical Science and Engineering</i> , 2012 , 6, 282-291	4.5	8
74	Prediction and phase segregation in thin-film of conjugated polymer blends. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2005 , 43, 1382-1391	2.6	8
73	Sharp pH-sensitive amphiphilic polypeptide macrophotosensitizer for near infrared imaging-guided photodynamic therapy. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2019 , 15, 198-207	6	8
72	Lignin promoted the fast formation of a robust and highly conductive deep eutectic solvent ionic gel at room temperature for a flexible quasi-solid-state supercapacitor and strain sensors. <i>Green Chemistry</i> , 2021 , 23, 5120-5128	10	8
71	Tetraphenylporphine-Modified Polymeric Nanoparticles Containing NIR Photosensitizer for Mitochondria-Targeting and Imaging-Guided Photodynamic Therapy. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 1043-1051	5.5	7
70	Power-output reduction of graphene oxide and a MnO2-free Zn/GO primary cell. <i>RSC Advances</i> , 2014 , 4, 42418-42423	3.7	7
69	CFD based combustion model for sewage sludge gasification in a fluidized bed. <i>Frontiers of Chemical Engineering in China</i> , 2009 , 3, 138-145		7
68	NIR-II Fluorescence Imaging-Guided Photothermal Therapy with Amphiphilic Polypeptide Nanoparticles Encapsulating Organic NIR-II Dye <i>ACS Applied Bio Materials</i> , 2020 , 3, 8953-8961	4.1	7
67	Efficient Degradation of Cellulose in Its Homogeneously Aqueous Solution over 3D Metal-Organic Framework/Graphene Hydrogel Catalyst. <i>Chinese Journal of Chemical Physics</i> , 2016 , 29, 742-748	0.9	7
66	Ultra-Stretchable, Self-Healing, Conductive, and Transparent PAA/DES Ionic Gel. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2000445	4.8	7
65	3D macro-micro-mesoporous FeC2O4/graphene hydrogel electrode for high-performance 2.5 V aqueous asymmetric supercapacitors. <i>Chinese Journal of Chemical Physics</i> , 2018 , 31, 707-716	0.9	7
64	Electrochemical exfoliation for few-layer graphene in molybdate aqueous solution and its application for fast electrothermal film. <i>Progress in Natural Science: Materials International</i> , 2020 , 30, 312-320	3.6	6
63	Fabrication of a model cellulose surface from straw with an aqueous sodium hydroxide/thiourea solution. <i>Journal of Applied Polymer Science</i> , 2008 , 110, 1330-1335	2.9	6

62	Dipolar chains and 2D aligned stripes of polymer-coated magnetic iron colloid. <i>Journal of Applied Polymer Science</i> , 2006 , 101, 4211-4215	2.9	6
61	Nanofiber formation of hydroxylpropylcellulose (HPC). <i>Macromolecular Bioscience</i> , 2006 , 6, 532-9	5.5	6
60	Direct observation of the main cell wall components of straw by atomic force microscopy. <i>Journal of Applied Polymer Science</i> , 2003 , 88, 2055-2059	2.9	6
59	S4-Containing hyperbranched polymer modified graphene oxide as strong linker for both rubber and carbon black to enhance the crosslinking and mechanical properties of nitrile butadiene rubber. <i>Chemical Engineering Journal</i> , 2021 , 417, 129336	14.7	6
58	An anti-aggregation NIR-II heptamethine-cyanine dye with a stereo-specific cyanine for imaging-guided photothermal therapy. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 2688-2696	7.3	6
57	Photocatalysis degradation of Azo dye using nanoTiO2-coated porous cellulose gel: enhancement by adsorption and its self-clean characteristic. <i>Micro and Nano Letters</i> , 2014 , 9, 193-197	0.9	5
56	Homogeneous Degradation of Cellulose in Its Aqueous Solution at Mild Temperature under Atmospheric Pressure. <i>Chinese Journal of Chemical Physics</i> , 2017 , 30, 207-210	0.9	5
55	Conversion of Pretreated Biomass into Levulinic Acid via Continuous Extraction at Atmosphere Pressure. <i>Chinese Journal of Chemical Physics</i> , 2014 , 27, 92-98	0.9	5
54	Mutual enhancement between plasmon and molecular fluorescence of conjugated polymer on metal substrates induced by STM. <i>Chemical Physics Letters</i> , 2007 , 433, 312-316	2.5	5
53	STM-excited molecular fluorescence from MEH-PPV conjugated polymer on Ag and Au. <i>Chemical Physics Letters</i> , 2007 , 450, 101-106	2.5	5
52	Non-premixed Combustion Model of Fluidized Bed Biomass Gasifier for Hydrogen-Rich Gas. <i>Chinese Journal of Chemical Physics</i> , 2006 , 19, 131-136	0.9	5
51	AFM study of crystalline cellulose in the cell walls of straw. <i>Polymer International</i> , 2006 , 55, 87-92	3.3	5
50	Applications of deep eutectic solvents in the extraction, dissolution, and functional materials of chitin: research progress and prospects. <i>Green Chemistry</i> , 2022 , 24, 552-564	10	5
49	Antiquenching Macromolecular NIR-II Probes with High-Contrast Brightness for Imaging-Guided Photothermal Therapy under 1064 nm Irradiation. <i>Advanced Healthcare Materials</i> , 2021 , e2101697	10.1	5
48	Deep eutectic solvents eutectogels: progress and challenges. <i>Green Chemical Engineering</i> , 2021 , 2, 359-	3559	5
47	Oxidation of furfural to maleic acid and fumaric acid in deep eutectic solvent (DES) under vanadium pentoxide catalysis. <i>Journal of Bioresources and Bioproducts</i> , 2021 , 6, 39-44	18.7	5
46	Imaging-Guided pHe and Glutathione Dual Responsive Polypeptide Nanogel for Smart Drug Delivery. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1800060	3.9	5
45	Amino modified iodinated BODIPY photosensitizer for highly efficient NIR imaging-guided photodynamic therapy with ultralow dose. <i>Dyes and Pigments</i> , 2021 , 194, 109611	4.6	5

(2015-2015)

44	Altered profile of gut microbiota after subchronic exposure to neochamaejasmin A in rats. <i>Environmental Toxicology and Pharmacology</i> , 2015 , 39, 927-33	5.8	4
43	Electrochemical Preparation of Polypyrrole/Graphene Films on Titanium Mesh as Active Materials for Supercapacitors. <i>Chinese Journal of Chemical Physics</i> , 2017 , 30, 112-116	0.9	4
42	Influence of fungal pretreatment on thermogravimetric characteristics and fast pyrolysis vapors of corn stover. <i>Biofuels</i> , 2011 , 2, 557-567	2	4
41	Investigation on the aggregation properties of cationic [60]fullerene derivative. <i>Science Bulletin</i> , 2004 , 49, 1441		4
40	Gravity-Driven Separation of Oil/Water Mixture by Porous Ceramic Membranes with Desired Surface Wettability. <i>Materials</i> , 2021 , 14,	3.5	4
39	Two-step hydrogen transfer catalysis conversion of lignin to valuable small molecular compounds. <i>Green Processing and Synthesis</i> , 2017 , 6,	3.9	3
38	Cobalt-Porphyrin Modified Three-Dimensional Graphene Hydrogel Electrode for High Performance Asymmetric Supercapacitors. <i>Nano</i> , 2019 , 14, 1950062	1.1	3
37	The solvent-free mechanochemical synthesis of mildly oxidized graphene oxide and its application as a novel conductive surfactant. <i>New Journal of Chemistry</i> , 2019 , 43, 7057-7064	3.6	3
36	Preparation of 5-Hydroxymethylfurfural from Cellulose via Fast Depolymerization and Consecutively Catalytic Conversion. <i>Chinese Journal of Chemical Physics</i> , 2013 , 26, 355-360	0.9	3
35	Surface modification of medical poly(vinyl chloride) with Olwater. <i>Journal of Applied Polymer Science</i> , 2008 , 110, 39-48	2.9	3
34	Separation and Dissolving of Cellulose from Wheat Straw Using Aqueous Solution: A Topochemistry Investigation. <i>Journal of Biobased Materials and Bioenergy</i> , 2009 , 3, 123-129	1.4	3
33	A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation. <i>ACS Applied Materials & Deep Eutectic Solvent with Polymer Crystalline Domain Regulation</i> . <i>ACS Applied Materials & Deep Eutectic Solvent with Polymer Crystalline Domain Regulation</i> . <i>ACS Applied Materials & Deep Eutectic Solvent with Polymer Crystalline Domain Regulation</i> . <i>ACS Applied Materials & Deep Eutectic Solvent with Polymer Crystalline Domain Regulation</i> . <i>ACS Applied Materials & Deep Eutectic Solvent with Polymer Crystalline Domain Regulation</i> . <i>ACS Applied Materials & Deep Eutectic Solvent with Polymer Crystalline Domain Regulation</i> . <i>ACS Applied Materials & Deep Eutectic Solvent with Polymer Crystalline Domain Regulation</i> . <i>ACS Applied Materials & Deep Eutectic Solvent With Polymer Crystalline Domain Regulation</i> . <i>ACS Applied Materials & Deep Eutectic Solvent With Polymer Crystalline Domain Regulation</i> . <i>ACS Applied Materials & Deep Eutectic Solvent With Polymer Crystalline Domain Regulation</i> . <i>ACS Applied Materials & Deep Eutectic Solvent With Polymer Crystalline Domain Regulation</i> .	9.5	3
32	Flexible Quasi-Solid-State High-Performance Aqueous Zinc Ion Hybrid Supercapacitor with Water-in-Salt Hydrogel Electrolyte and N/P-Dual Doped Graphene Hydrogel Electrodes. <i>Advanced Sustainable Systems</i> ,2100191	5.9	3
31	Silica Aerogels with Self-Reinforced Microstructure for Bioinspired Hydrogels. <i>Langmuir</i> , 2021 , 37, 5923	- <u>5</u> 931	3
30	Sharp-pH-Sensitive Amphiphilic Polypeptide Micelles with Adjustable Triggered pHs by Salts via the Hofmeister Effect. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1700427	2.6	3
29	Synthesis of Highly Ion-Conductive Lignin Eutectogels in a Ternary Deep Eutectic Solvent and Nitrogen-Doped 3D Hierarchical Porous Carbons for Supercapacitors. <i>Biomacromolecules</i> , 2021 , 22, 418	1 ⁶ :419()3
28	Ultrahigh Conductive and Stretchable Eutectogel Electrolyte for High-Voltage Flexible Antifreeze Quasi-solid-state Zinc-Ion Hybrid Supercapacitor. <i>ACS Applied Energy Materials</i> , 2022 , 5, 3013-3021	6.1	3
27	Luminescence study of the initial, pre-casting firing temperatures of clay mould and core used for bronze casting at Yinxu (13c. BC~11c. BC). <i>Quaternary Geochronology</i> , 2015 , 30, 374-380	2.7	2

26	Luminescence determination of firing temperature of archaeological pure sand related to ancient Dian bronze casting, China. <i>Quaternary Geochronology</i> , 2012 , 10, 387-393	2.7	2
25	Preparation of Near-Infrared PEGylated Polypeptide for Potential Visible Drug Delivery. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2013 , 50, 90-98	2.2	2
24	STM-induced light emission of conjugated polymer thin film in different chain aggregations. <i>Physica B: Condensed Matter</i> , 2007 , 393, 6-10	2.8	2
23	Solid-Liquid-Vapor Triphase Gel. <i>Langmuir</i> , 2021 , 37, 13501-13511	4	2
22	Multifunctional Nanotheranostic Agent for NIR-II Imaging-Guided Synergetic Photothermal/Photodynamic Therapy. <i>Advanced Therapeutics</i> , 2021 , 4, 2000240	4.9	2
21	Preparation and Characterization of a Novel Vinyl Polysiloxane Getter for Hydrogen Elimination. <i>Materials</i> , 2021 , 14,	3.5	2
20	Effect of pH on gelatin self-association investigated by laser light scattering and atomic force microscopy 2002 , 51, 233		2
19	Freeze-Resistant, Conductive, and Robust Eutectogels of Metal Salt-Based Deep Eutectic Solvents with Poly(vinyl alcohol). <i>ACS Applied Polymer Materials</i> , 2022 , 4, 2057-2064	4.3	2
18	Synthesis of biodegradable amphiphilic Y-shaped block co-polymers via ring-opening polymerization for drug delivery. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2011 , 22, 1197-213	3.5	2
17	Intelligent Fluorescence Probe with Turn-on Properties By a Bee-SawlBalance of Visible and Near-infrared Fluorescence. <i>ChemPhotoChem</i> , 2017 , 1, 568-574	3.3	1
16	Galactose and near infrared fluorescence probe conjugated pH-responsive copolymer for imaging of drug delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e72-3	11.7	1
15	Synthesis of Pb(OH)2/rGO Catalyst for Conversion of Sugar to Lactic Acid in Water□ <i>Chinese Journal of Chemical Physics</i> , 2015 , 28, 533-538	0.9	1
14	Conversion of Glucose to Valuable Platform Chemicals over Graphene Solid Acid Catalyst. <i>Chinese Journal of Chemical Physics</i> , 2015 , 28, 230-234	0.9	1
13	Fabrication of conjugated polymer arrays by spinodal dewetting. <i>Polymer International</i> , 2004 , 53, 1968-	1 9 .732	1
12	Spinodal dewetting Asimple method to prepare conjugated polymer array. <i>Journal of Applied Polymer Science</i> , 2005 , 98, 1412-1417	2.9	1
11	Galactose conjugated boron dipyrromethene and hydrogen bonding promoted J-aggregates for efficiently targeted NIR-II fluorescence assistant photothermal therapy <i>Journal of Colloid and Interface Science</i> , 2021 , 612, 287-297	9.3	1
10	Photoassisted Reduction Synthesis of [email[protected]2/Graphene Catalysts with Excellent Activities toward Methanol Oxidation. <i>Energy & Energy & </i>	4.1	1
9	Mercaptopropyl-doped ultra-small silica modified GO nanosheets to enhance mechanical properties of nitrile butadiene rubber. <i>Polymer</i> , 2022 , 124627	3.9	O

LIST OF PUBLICATIONS

8	Double pH-sensitive nanotheranostics of polypeptide nanoparticle encapsulated BODIPY with both NIR activated fluorescence and enhanced photodynamic therapy. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 8871-8881	7.3	O
7	Efficient preparation of high-quality graphene via anodic and cathodic simultaneous electrochemical exfoliation under the assistance of microwave. <i>Journal of Colloid and Interface Science</i> , 2021 , 608, 1422-1431	9.3	O
6	Self-assembled monolayers modified and further silanized graphene nanosheets reinforced silicone rubber with highly mechanical performance. <i>Composites Communications</i> , 2021 , 24, 100666	6.7	0
5	Synergistic catalysis of PtM alloys and nickel hydroxide on highly enhanced electrocatalytic activity and durability for methanol oxidation reaction. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 625, 126942	5.1	0
4	Calcium-Doped Boron Nitride Aerogel Enables Infrared Stealth at High Temperature Up to 1300 IC. <i>Nano-Micro Letters</i> , 2021 , 14, 18	19.5	0
3	Environmental vapor induced self-assembly of an amphiphilic block copolymer poly(styrene-b-acrylamide) onto the solid substrate. <i>Polymers for Advanced Technologies</i> , 2011 , 22, 214	15 ⁻³ 2 ⁻¹ 50	
2	Direct observation of the fringed micelles structure of cellulose molecules solvated in dimethylacetamide/LiCl system. <i>Polymer International</i> , 2002 , 51, 738-739	3.3	
1	Investigation of solvatochromism and aggregation behavior of C60(C4H10N+)IIIn binary solvent mixtures. <i>Science Bulletin</i> , 2003 , 48, 1938-1942		