## Jason H T Bates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5297292/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A computational modeling approach for dosing endoscopic intratumoral chemotherapy for advanced non-small cell lung cancer. Scientific Reports, 2022, 12, 44.                                                                     | 1.6 | 5         |
| 2  | Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official<br>American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular<br>Biology, 2022, 66, e1-e14. | 1.4 | 82        |
| 3  | Prediction of lung cancer risk based on age and smoking history. Computer Methods and Programs in<br>Biomedicine, 2022, 216, 106660.                                                                                             | 2.6 | 6         |
| 4  | Deep Fusion of Ultrasound Videos for Furosemide Classification. , 2022, , .                                                                                                                                                      |     | 0         |
| 5  | What is new in respiratory monitoring?. Journal of Clinical Monitoring and Computing, 2022, 36, 599-607.                                                                                                                         | 0.7 | 4         |
| 6  | Electric Cell-Substrate Impedance Sensing (ECIS) as a Platform for Evaluating Barrier-Function Susceptibility and Damage from Pulmonary Atelectrauma. Biosensors, 2022, 12, 390.                                                 | 2.3 | 5         |
| 7  | Forced expiratory time: a composite of airway narrowing and airway closure. Journal of Applied Physiology, 2021, 130, 80-86.                                                                                                     | 1.2 | 5         |
| 8  | Central airway collapse is related to obesity independent of asthma phenotype. Respirology, 2021, 26, 334-341.                                                                                                                   | 1.3 | 14        |
| 9  | Wavelet decomposition facilitates training on small datasets for medical image classification by deep learning. Histochemistry and Cell Biology, 2021, 155, 309-317.                                                             | 0.8 | 12        |
| 10 | An oropharyngeal device for airway management of conscious and semiconscious patients: A<br>randomized clinical trial. Journal of the American College of Emergency Physicians Open, 2021, 2,<br>e12440.                         | 0.4 | 0         |
| 11 | Measuring the mechanical input impedance of the respiratory system with breath-driven flow oscillations. Journal of Applied Physiology, 2021, 130, 1064-1071.                                                                    | 1.2 | 1         |
| 12 | A simple assessment of lung nodule location for reduction in unnecessary invasive procedures.<br>Journal of Thoracic Disease, 2021, 13, 4207-4216.                                                                               | 0.6 | 0         |
| 13 | Percolation of collagen stress in a random network model of the alveolar wall. Scientific Reports, 2021, 11, 16654.                                                                                                              | 1.6 | 8         |
| 14 | Altered airway mechanics in the context of obesity and asthma. Journal of Applied Physiology, 2021, 130, 36-47.                                                                                                                  | 1.2 | 20        |
| 15 | Positive expiratory pressure: a potential therapy to mitigate acute bronchoconstriction in the asthma of obesity. Journal of Applied Physiology, 2021, 131, 1663-1670.                                                           | 1.2 | 3         |
| 16 | Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia. Nature Communications, 2020, 11, 4883.                                                                                                                | 5.8 | 95        |
| 17 | Modeling Lung Derecruitment in VILI Due to Fluid-Occlusion: The Role of Emergent Behavior. Frontiers in Physiology, 2020, 11, 542744.                                                                                            | 1.3 | 2         |
| 18 | Physiological signature of late-onset nonallergic asthma of obesity. ERJ Open Research, 2020, 6,<br>00049-2020.                                                                                                                  | 1.1 | 7         |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Classification and Detection of Breathing Patterns with Wearable Sensors and Deep Learning.<br>Sensors, 2020, 20, 6481.                                                                            | 2.1 | 22        |
| 20 | Atelectrauma Versus Volutrauma: A Tale of Two Time-Constants. , 2020, 2, e0299.                                                                                                                    |     | 21        |
| 21 | Tumor density is associated with response to endobronchial ultrasound-guided transbronchial needle injection of cisplatin. Journal of Thoracic Disease, 2020, 12, 4825-4832.                       | 0.6 | 6         |
| 22 | The POOR Get POORer: A Hypothesis for the Pathogenesis of Ventilator-induced Lung Injury. American<br>Journal of Respiratory and Critical Care Medicine, 2020, 202, 1081-1087.                     | 2.5 | 51        |
| 23 | Three Alveolar Phenotypes Govern Lung Function in Murine Ventilator-Induced Lung Injury. Frontiers<br>in Physiology, 2020, 11, 660.                                                                | 1.3 | 20        |
| 24 | An Analytical Model for Estimating Alveolar Wall Elastic Moduli From Lung Tissue Uniaxial<br>Stress-Strain Curves. Frontiers in Physiology, 2020, 11, 121.                                         | 1.3 | 22        |
| 25 | Technical standards for respiratory oscillometry. European Respiratory Journal, 2020, 55, 1900753.                                                                                                 | 3.1 | 311       |
| 26 | An Analytic Model of Tissue Self-Healing and Its Network Implementation: Application to Fibrosis and Aging. Frontiers in Physiology, 2020, 11, 583024.                                             | 1.3 | 5         |
| 27 | Analyzing Complex Medical Image Information: Convolution Versus Wavelets in a Neural Net. , 2019, ,<br>85-94.                                                                                      |     | 1         |
| 28 | BMI but not central obesity predisposes to airway closure during bronchoconstriction. Respirology, 2019, 24, 543-550.                                                                              | 1.3 | 26        |
| 29 | The Role of Airway Shunt Elastance on the Compartmentalization of Respiratory System Impedance.<br>Journal of Engineering and Science in Medical Diagnostics and Therapy, 2019, 2, 0110011-110018. | 0.3 | 4         |
| 30 | Cisplatin Pharmacodynamics Following Endobronchial Ultrasound-Guided Transbronchial Needle<br>Injection into Lung Tumors. Scientific Reports, 2019, 9, 6819.                                       | 1.6 | 17        |
| 31 | Using injury cost functions from a predictive single-compartment model to assess the severity of mechanical ventilator-induced lung injuries. Journal of Applied Physiology, 2019, 127, 58-70.     | 1.2 | 14        |
| 32 | Sources of breathing pattern variability in the respiratory feedback control loop. Journal of Theoretical Biology, 2019, 469, 148-162.                                                             | 0.8 | 8         |
| 33 | Linking Physiological Biomarkers of Ventilator-Induced Lung Injury to a Rich-Get-Richer Mechanism of<br>Injury Progression. Annals of Biomedical Engineering, 2019, 47, 638-645.                   | 1.3 | 5         |
| 34 | Sighs matter. Respirology, 2018, 23, 727-728.                                                                                                                                                      | 1.3 | 1         |
| 35 | Beyond BMI. Chest, 2018, 153, 702-709.                                                                                                                                                             | 0.4 | 91        |
| 36 | Ventilator-induced lung injury and lung mechanics. Annals of Translational Medicine, 2018, 6, 378-378.                                                                                             | 0.7 | 81        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Breathing In and Out: Airway Resistance. Respiratory Medicine, 2018, , 127-150.                                                                                                                  | 0.1 | 2         |
| 38 | A model-based approach to interpreting multibreath nitrogen washout data. Journal of Applied<br>Physiology, 2018, 124, 1155-1163.                                                                | 1.2 | 13        |
| 39 | Linking lung function to structural damage of alveolar epithelium in ventilator-induced lung injury.<br>Respiratory Physiology and Neurobiology, 2018, 255, 22-29.                               | 0.7 | 23        |
| 40 | Alveolar Micromechanics in Bleomycin-induced Lung Injury. American Journal of Respiratory Cell and<br>Molecular Biology, 2018, 59, 757-769.                                                      | 1.4 | 42        |
| 41 | Mitigation of airways responsiveness by deep inflation of the lung. Journal of Applied Physiology, 2018, 124, 1447-1455.                                                                         | 1.2 | 3         |
| 42 | Topographic distribution of idiopathic pulmonary fibrosis: a hybrid physics- and agent-based model.<br>Physiological Measurement, 2018, 39, 064007.                                              | 1.2 | 22        |
| 43 | Alveolar leak develops by a rich-get-richer process in ventilator-induced lung injury. PLoS ONE, 2018, 13, e0193934.                                                                             | 1.1 | 26        |
| 44 | The role of fractional calculus in modeling biological phenomena: A review. Communications in Nonlinear Science and Numerical Simulation, 2017, 51, 141-159.                                     | 1.7 | 448       |
| 45 | An Official American Thoracic Society Workshop Report: Obesity and Metabolism. An Emerging<br>Frontier in Lung Health and Disease. Annals of the American Thoracic Society, 2017, 14, 1050-1059. | 1.5 | 45        |
| 46 | Dynamic Mechanical Interactions Between Neighboring Airspaces Determine Cyclic Opening and<br>Closure in Injured Lung. Critical Care Medicine, 2017, 45, 687-694.                                | 0.4 | 33        |
| 47 | CORP: Measurement of lung function in small animals. Journal of Applied Physiology, 2017, 123, 1039-1046.                                                                                        | 1.2 | 18        |
| 48 | Pathophysiology to Phenotype in the Asthma of Obesity. Annals of the American Thoracic Society, 2017, 14, S395-S398.                                                                             | 1.5 | 34        |
| 49 | Fluctuation Analysis of Peak Expiratory Flow and Its Association with Treatment Failure in Asthma.<br>American Journal of Respiratory and Critical Care Medicine, 2017, 195, 993-999.            | 2.5 | 24        |
| 50 | Linking Ventilator Injury-Induced Leak across the Blood-Gas Barrier to Derangements in Murine Lung<br>Function. Frontiers in Physiology, 2017, 8, 466.                                           | 1.3 | 31        |
| 51 | Dissecting the inflammatory twitch in allergically inflamed mice. American Journal of Physiology -<br>Lung Cellular and Molecular Physiology, 2016, 310, L1003-L1009.                            | 1.3 | 3         |
| 52 | Predicting the Mortality Benefit of CT Screening for Second Lung Cancer in a High-Risk Population.<br>PLoS ONE, 2016, 11, e0165471.                                                              | 1.1 | 3         |
| 53 | Entropy Production and the Pressure–Volume Curve of the Lung. Frontiers in Physiology, 2016, 7, 73.                                                                                              | 1.3 | 15        |
| 54 | The Virtual Microbiome: Computational Approaches to the Study of Microbe-Host Interactions.<br>Critical Reviews in Biomedical Engineering, 2016, 44, 459-472.                                    | 0.5 | 0         |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Systems physiology of the airways in health and obstructive pulmonary disease. Wiley<br>Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 423-437.                                              | 6.6 | 25        |
| 56 | Predicting ventilator-induced lung injury using a lung injury cost function. Journal of Applied Physiology, 2016, 121, 106-114.                                                                                 | 1.2 | 32        |
| 57 | A Computational Model of Cellular Engraftment on Lung Scaffolds. BioResearch Open Access, 2016, 5, 308-319.                                                                                                     | 2.6 | 6         |
| 58 | Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of<br>Diet-Induced Obese Asthma. American Journal of Respiratory Cell and Molecular Biology, 2016, 55,<br>176-187. | 1.4 | 31        |
| 59 | It's in our interests not to be in conflict—of interest, that is. Journal of Applied Physiology, 2016, 121,<br>829-830.                                                                                         | 1.2 | 0         |
| 60 | Failure to Disclose Conflicts of Interest. JAMA Surgery, 2016, 151, 1190.                                                                                                                                       | 2.2 | 0         |
| 61 | Modeling the Progression of Epithelial Leak Caused by Overdistension. Cellular and Molecular<br>Bioengineering, 2016, 9, 151-161.                                                                               | 1.0 | 10        |
| 62 | Effect of Airway Pressure Release Ventilation on Dynamic Alveolar Heterogeneity. JAMA Surgery, 2016,<br>151, 64.                                                                                                | 2.2 | 49        |
| 63 | Physiological Mechanisms of Airway Hyperresponsiveness in Obese Asthma. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 618-623.                                                          | 1.4 | 42        |
| 64 | Sex-Related Differences in Pulmonary Function following 6 Months of Cigarette Exposure:<br>Implications for Sexual Dimorphism in Mild COPD. PLoS ONE, 2016, 11, e0164835.                                       | 1.1 | 34        |
| 65 | Digital resolution enhancement of intracardiac excitation maps during atrial fibrillation. Journal of Clinical Monitoring and Computing, 2015, 29, 279-89.                                                      | 0.7 | Ο         |
| 66 | Prospectively Quantifying the Propensity for Atrial Fibrillation: A Mechanistic Formulation. PLoS ONE, 2015, 10, e0118746.                                                                                      | 1.1 | 4         |
| 67 | Structural Defects Lead to Dynamic Entrapment in Cardiac Electrophysiology. PLoS ONE, 2015, 10, e0119535.                                                                                                       | 1.1 | 0         |
| 68 | Predicting the response of the injured lung to the mechanical breath profile. Journal of Applied Physiology, 2015, 118, 932-940.                                                                                | 1.2 | 40        |
| 69 | Mechanical Properties of the Lung. , 2015, , 289-304.                                                                                                                                                           |     | 8         |
| 70 | Evaluation of scientific impact: insights and incites. Journal of Applied Physiology, 2015, 118, 253-254.                                                                                                       | 1.2 | 0         |
| 71 | Modeling the impairment of airway smooth muscle force by stretch. Journal of Applied Physiology, 2015, 118, 684-691.                                                                                            | 1.2 | 12        |
| 72 | A computational model of unresolved allergic inflammation in chronic asthma. American Journal of<br>Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L384-L390.                                  | 1.3 | 19        |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Human Trachealis and Main Bronchi Smooth Muscle Are Normoresponsive in Asthma. American<br>Journal of Respiratory and Critical Care Medicine, 2015, 191, 884-893.            | 2.5 | 50        |
| 74 | Resistance to alveolar shape change limits range of force propagation in lung parenchyma.<br>Respiratory Physiology and Neurobiology, 2015, 211, 22-28.                      | 0.7 | 10        |
| 75 | Computational models of ventilator induced lung injury and surfactant dysfunction. Drug Discovery<br>Today: Disease Models, 2015, 15, 17-22.                                 | 1.2 | 7         |
| 76 | Potential role of the airway wall in the asthma of obesity. Journal of Applied Physiology, 2015, 118, 36-41.                                                                 | 1.2 | 30        |
| 77 | Variable Ventilation as a Diagnostic Tool for the Injured Lung. IEEE Transactions on Biomedical Engineering, 2015, 62, 2106-2113.                                            | 2.5 | 9         |
| 78 | Mechanical interactions between adjacent airways in the lung. Journal of Applied Physiology, 2014, 116, 628-634.                                                             | 1.2 | 19        |
| 79 | A network model of correlated growth of tissue stiffening in pulmonary fibrosis. New Journal of Physics, 2014, 16, 065022.                                                   | 1.2 | 19        |
| 80 | Influence of distinct asthma phenotypes on lung function following weight loss in the obese.<br>Respirology, 2014, 19, 1170-1177.                                            | 1.3 | 54        |
| 81 | Mechanical Breath Profile of Airway Pressure Release Ventilation. JAMA Surgery, 2014, 149, 1138.                                                                             | 2.2 | 72        |
| 82 | The Nonallergic Asthma of Obesity. A Matter of Distal Lung Compliance. American Journal of<br>Respiratory and Critical Care Medicine, 2014, 189, 1494-1502.                  | 2.5 | 127       |
| 83 | Elucidating the fuzziness in physician decision making in ARDS. Journal of Clinical Monitoring and Computing, 2013, 27, 357-363.                                             | 0.7 | 7         |
| 84 | Assessing the Progression of Ventilator-Induced Lung Injury in Mice. IEEE Transactions on Biomedical Engineering, 2013, 60, 3449-3457.                                       | 2.5 | 18        |
| 85 | A Progressive Rupture Model of Soft Tissue Stress Relaxation. Annals of Biomedical Engineering, 2013, 41, 1129-1138.                                                         | 1.3 | 9         |
| 86 | Linking the Development of Ventilator-Induced Injury to Mechanical Function in the Lung. Annals of<br>Biomedical Engineering, 2013, 41, 527-536.                             | 1.3 | 48        |
| 87 | Influence of parenchymal heterogeneity on airway-parenchymal interdependence. Respiratory<br>Physiology and Neurobiology, 2013, 188, 94-101.                                 | 0.7 | 17        |
| 88 | Airway-parenchymal interdependence in the lung slice. Respiratory Physiology and Neurobiology, 2013, 185, 211-216.                                                           | 0.7 | 19        |
| 89 | The Inflammatory Twitch as a General Strategy for Controlling the Host Response. Journal of Immunology, 2013, 190, 3510-3516.                                                | 0.4 | 15        |
| 90 | Of course respiratory mechanics are related to airway inflammation in asthma! The more difficult<br>question is "Why?― Clinical and Experimental Allergy, 2013, 43, 488-490. | 1.4 | 1         |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A Multi-Scale Approach to Airway Hyperresponsiveness: From Molecule to Organ. Frontiers in Physiology, 2012, 3, 191.                                                                                           | 1.3 | 39        |
| 92  | Airway responsiveness depends on the diffusion rate of methacholine across the airway wall. Journal of Applied Physiology, 2012, 112, 1670-1677.                                                               | 1.2 | 18        |
| 93  | Continuum vs. spring network models of airway-parenchymal interdependence. Journal of Applied Physiology, 2012, 113, 124-129.                                                                                  | 1.2 | 20        |
| 94  | The Temporal Evolution of Airways Hyperresponsiveness and Inflammation. Journal of Allergy & Therapy, 2012, 01, 1-7.                                                                                           | 0.1 | 27        |
| 95  | Oscillation Mechanics of the Respiratory System. , 2011, 1, 1233-1272.                                                                                                                                         |     | 157       |
| 96  | Mechanical Determinants of Airways Hyperresponsiveness. Critical Reviews in Biomedical Engineering, 2011, 39, 281-296.                                                                                         | 0.5 | 17        |
| 97  | Lung tissue mechanics as an emergent phenomenon. Journal of Applied Physiology, 2011, 110, 1111-1118.                                                                                                          | 1.2 | 115       |
| 98  | Effects of recruitment/derecruitment dynamics on the efficacy of variable ventilation. Journal of Applied Physiology, 2011, 110, 1319-1326.                                                                    | 1.2 | 24        |
| 99  | Multi-scale lung modeling. Journal of Applied Physiology, 2011, 110, 1466-1472.                                                                                                                                | 1.2 | 54        |
| 100 | Effects of Central Airway Shunting on the Mechanical Impedance of the Mouse Lung. Annals of<br>Biomedical Engineering, 2011, 39, 497-507.                                                                      | 1.3 | 10        |
| 101 | Analysis of Regional Mechanics in Canine Lung Injury Using Forced Oscillations and 3D Image Registration. Annals of Biomedical Engineering, 2011, 39, 1112-1124.                                               | 1.3 | 72        |
| 102 | Quantifying the Roles of Tidal Volume and PEEP in the Pathogenesis of Ventilator-Induced Lung Injury.<br>Annals of Biomedical Engineering, 2011, 39, 1505-1516.                                                | 1.3 | 64        |
| 103 | Detrimental effects of albuterol on airway responsiveness requires airway inflammation and is independent of Î <sup>2</sup> -receptor affinity in murine models of asthma. Respiratory Research, 2011, 12, 27. | 1.4 | 23        |
| 104 | Emergence of Complex Behavior. Circulation: Arrhythmia and Electrophysiology, 2011, 4, 586-591.                                                                                                                | 2.1 | 27        |
| 105 | Complexity and Emergent Phenomena. , 2011, 1, 995-1029.                                                                                                                                                        |     | 25        |
| 106 | Could an increase in airway smooth muscle shortening velocity cause airway hyperresponsiveness?.<br>American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L121-L131.             | 1.3 | 28        |
| 107 | Modeling the Complex Dynamics of Derecruitment in the Lung. Annals of Biomedical Engineering, 2010, 38, 3466-3477.                                                                                             | 1.3 | 33        |
| 108 | Inhaled salmeterol and/or fluticasone alters structure/function in a murine model of allergic airways disease. Respiratory Research, 2010, 11, 22.                                                             | 1.4 | 35        |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A multiscale, spatially distributed model of asthmatic airway hyper-responsiveness. Journal of<br>Theoretical Biology, 2010, 266, 614-624.                                                                                         | 0.8 | 70        |
| 110 | The multiscale manifestations of airway smooth muscle contraction in the lung. Journal of Applied Physiology, 2010, 109, 269-270.                                                                                                  | 1.2 | 6         |
| 111 | Influence of airway wall stiffness and parenchymal tethering on the dynamics of<br>bronchoconstriction. American Journal of Physiology - Lung Cellular and Molecular Physiology,<br>2010, 299, L98-L108.                           | 1.3 | 52        |
| 112 | A Continuous-Binding Cross-Linker Model for Passive Airway Smooth Muscle. Biophysical Journal, 2010, 99, 3164-3171.                                                                                                                | 0.2 | 22        |
| 113 | Balancing Robustness against the Dangers of Multiple Attractors in a Hopfield-Type Model of<br>Biological Attractors. PLoS ONE, 2010, 5, e14413.                                                                                   | 1.1 | 12        |
| 114 | On the ill-conditioned nature of the intracardiac inverse problem. , 2009, 2009, 3929-31.                                                                                                                                          |     | 2         |
| 115 | Physiologic Dysfunction of the Asthmatic Lung: What's Going On Down There, Anyway?. Proceedings of the American Thoracic Society, 2009, 6, 306-311.                                                                                | 3.5 | 37        |
| 116 | Acid aspiration-induced airways hyperresponsiveness in mice. Journal of Applied Physiology, 2009, 107, 1763-1770.                                                                                                                  | 1.2 | 32        |
| 117 | Neither fibrin nor plasminogen activator inhibitor-1 deficiency protects lung function in a mouse<br>model of acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology,<br>2009, 296, L277-L285. | 1.3 | 21        |
| 118 | Animal models of asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology,<br>2009, 297, L401-L410.                                                                                                         | 1.3 | 148       |
| 119 | Pulmonary mechanics: A system identification perspective. , 2009, 2009, 170-2.                                                                                                                                                     |     | 15        |
| 120 | The role of time and pressure on alveolar recruitment. Journal of Applied Physiology, 2009, 106, 757-765.                                                                                                                          | 1.2 | 135       |
| 121 | Assessment of peripheral lung mechanics. Respiratory Physiology and Neurobiology, 2008, 163, 54-63.                                                                                                                                | 0.7 | 40        |
| 122 | Extracellular matrix mechanics in lung parenchymal diseases. Respiratory Physiology and Neurobiology, 2008, 163, 33-43.                                                                                                            | 0.7 | 125       |
| 123 | The Synergistic Interactions of Allergic Lung Inflammation and Intratracheal Cationic Protein.<br>American Journal of Respiratory and Critical Care Medicine, 2008, 177, 261-268.                                                  | 2.5 | 52        |
| 124 | How should airway smooth muscle be punished for causing asthma?. Journal of Applied Physiology, 2008, 104, 575-576.                                                                                                                | 1.2 | 1         |
| 125 | Unrestrained video-assisted plethysmography: a noninvasive method for assessment of lung mechanical function in small animals. Journal of Applied Physiology, 2008, 104, 253-261.                                                  | 1.2 | 19        |
| 126 | Heterogeneity of bronchoconstriction does not distinguish mild asthmatic subjects from healthy controls when supine. Journal of Applied Physiology, 2008, 104, 10-19.                                                              | 1.2 | 28        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Computational assessment of airway wall stiffness in vivo in allergically inflamed mouse models of asthma. Journal of Applied Physiology, 2008, 104, 1601-1610.                                                                   | 1.2 | 35        |
| 128 | Modeling the dynamics of recruitment and derecruitment in mice with acute lung injury. Journal of<br>Applied Physiology, 2008, 105, 1813-1821.                                                                                    | 1.2 | 70        |
| 129 | The response to recruitment worsens with progression of lung injury and fibrin accumulation in a mouse model of acid aspiration. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1580-L1589. | 1.3 | 42        |
| 130 | Linking Parenchymal Disease Progression to Changes in Lung Mechanical Function by Percolation.<br>American Journal of Respiratory and Critical Care Medicine, 2007, 176, 617-623.                                                 | 2.5 | 119       |
| 131 | Airway Hyperresponsiveness in Allergically Inflamed Mice. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 768-774.                                                                                         | 2.5 | 132       |
| 132 | Point:Counterpoint: Lung impedance measurements are/are not more useful than simpler<br>measurements of lung function in animal models of pulmonary disease. Journal of Applied Physiology,<br>2007, 103, 1900-1901.              | 1.2 | 18        |
| 133 | In silico modeling of interstitial lung mechanics: implications for disease development and repair.<br>Drug Discovery Today: Disease Models, 2007, 4, 139-145.                                                                    | 1.2 | 26        |
| 134 | Intrinsic and antigen-induced airway hyperresponsiveness are the result of diverse physiological mechanisms. Journal of Applied Physiology, 2007, 102, 221-230.                                                                   | 1.2 | 84        |
| 135 | Bronchodilatory effect of deep inspiration on the dynamics of bronchoconstriction in mice. Journal of Applied Physiology, 2007, 103, 1696-1705.                                                                                   | 1.2 | 30        |
| 136 | Parenchymal tethering, airway wall stiffness, and the dynamics of bronchoconstriction. Journal of Applied Physiology, 2007, 102, 1912-1920.                                                                                       | 1.2 | 68        |
| 137 | A Recruitment Model of Quasi-Linear Power-Law Stress Adaptation in Lung Tissue. Annals of<br>Biomedical Engineering, 2007, 35, 1165-1174.                                                                                         | 1.3 | 69        |
| 138 | Exaggerated airway narrowing in mice treated with intratracheal cationic protein. Journal of Applied Physiology, 2006, 100, 500-506.                                                                                              | 1.2 | 45        |
| 139 | The Estimation of Lung Mechanics Parameters in the Presence of Pathology: A Theoretical Analysis.<br>Annals of Biomedical Engineering, 2006, 34, 384-392.                                                                         | 1.3 | 60        |
| 140 | Choosing the frequency of deep inflation in mice: balancing recruitment against ventilator-induced<br>lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291,<br>L710-L717.              | 1.3 | 60        |
| 141 | Airway hyperresponsiveness induced by cationic proteins in vivo: site of action. American Journal of<br>Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L413-L418.                                                | 1.3 | 34        |
| 142 | Pulmonary impedance and alveolar instability during injurious ventilation in rats. Journal of Applied<br>Physiology, 2005, 99, 723-730.                                                                                           | 1.2 | 63        |
| 143 | Modeling the oscillation dynamics of activated airway smooth muscle strips. American Journal of<br>Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L849-L855.                                                     | 1.3 | 29        |
| 144 | Tumor Necrosis Factor–α Overexpression in Lung Disease. American Journal of Respiratory and Critical<br>Care Medicine, 2005, 171, 1363-1370.                                                                                      | 2.5 | 231       |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | The interface between measurement and modeling of peripheral lung mechanics. Respiratory<br>Physiology and Neurobiology, 2005, 148, 153-164.                                        | 0.7 | 51        |
| 146 | Dynamic mechanical consequences of deep inflation in mice depend on type and degree of lung injury.<br>Journal of Applied Physiology, 2004, 96, 293-300.                            | 1.2 | 71        |
| 147 | The allergic mouse model of asthma: normal smooth muscle in an abnormal lung?. Journal of Applied<br>Physiology, 2004, 96, 2019-2027.                                               | 1.2 | 201       |
| 148 | The Use and Misuse of Penh in Animal Models of Lung Disease. American Journal of Respiratory Cell<br>and Molecular Biology, 2004, 31, 373-374.                                      | 1.4 | 228       |
| 149 | Time Course of Airway Mechanics of the (+)Insert Myosin Isoform Knockout Mouse. American Journal of Respiratory Cell and Molecular Biology, 2004, 30, 326-332.                      | 1.4 | 26        |
| 150 | Thoracic Gas Volume Measurements in Paralyzed Mice. Annals of Biomedical Engineering, 2004, 32, 1420-1427.                                                                          | 1.3 | 12        |
| 151 | The "Goldilocks effect" in cystic fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse. BMC Genetics, 2004, 5, 21.                              | 2.7 | 48        |
| 152 | Mechanical properties of mouse distal lung: in vivo versus in vitro comparison. Respiratory<br>Physiology and Neurobiology, 2004, 143, 77-86.                                       | 0.7 | 22        |
| 153 | Oscillation mechanics of the human lung periphery in asthma. Journal of Applied Physiology, 2004, 97, 1849-1858.                                                                    | 1.2 | 58        |
| 154 | Extravascular fibrin, plasminogen activator, plasminogen activator inhibitors, and airway hyperresponsiveness. Journal of Clinical Investigation, 2004, 114, 104-111.               | 3.9 | 91        |
| 155 | Extravascular fibrin, plasminogen activator, plasminogen activator inhibitors, and airway hyperresponsiveness. Journal of Clinical Investigation, 2004, 114, 104-111.               | 3.9 | 148       |
| 156 | Measuring the lung function in the mouse: the challenge of size. Respiratory Research, 2003, 4, 4.                                                                                  | 1.4 | 320       |
| 157 | Measuring lung function in mice: the phenotyping uncertainty principle. Journal of Applied Physiology, 2003, 94, 1297-1306.                                                         | 1.2 | 190       |
| 158 | α1-Antitrypsin Determines the Pattern of Emphysema and Function in Tobacco Smoke–exposed Mice.<br>American Journal of Respiratory and Critical Care Medicine, 2002, 166, 1596-1603. | 2.5 | 109       |
| 159 | A reevaluation of the validity of unrestrained plethysmography in mice. Journal of Applied Physiology, 2002, 93, 1198-1207.                                                         | 1.2 | 235       |
| 160 | Airway and tissue mechanics in a murine model of asthma: alveolar capsule vs. forced oscillations.<br>Journal of Applied Physiology, 2002, 93, 263-270.                             | 1.2 | 197       |
| 161 | Time dependence of recruitment and derecruitment in the lung: a theoretical model. Journal of Applied Physiology, 2002, 93, 705-713.                                                | 1.2 | 1,217     |
| 162 | Geometric determinants of airway resistance in two isomorphic rodent species. Respiratory<br>Physiology and Neurobiology, 2002, 130, 317-325.                                       | 0.7 | 31        |

| #   | Article                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Transient mechanical benefits of a deep inflation in the injured mouse lung. Journal of Applied Physiology, 2002, 93, 1709-1715.                             | 1.2 | 58        |
| 164 | Nonlinearity of respiratory mechanics during bronchoconstriction in mice with airway inflammation.<br>Journal of Applied Physiology, 2002, 92, 1802-1807.    | 1.2 | 64        |
| 165 | Mechanical output impedance of the lung determined from cardiogenic oscillations. Journal of Applied Physiology, 2001, 91, 859-865.                          | 1.2 | 26        |
| 166 | Effects of deep inspiration on bronchoconstriction in the rat. Respiration Physiology, 2001, 127, 201-215.                                                   | 2.8 | 15        |
| 167 | A Micromechanical Model of Airway-Parenchymal Interdependence. Annals of Biomedical Engineering, 2000, 28, 309-317.                                          | 1.3 | 13        |
| 168 | Kinetics of respiratory system elastance after airway challenge in dogs. Journal of Applied Physiology, 2000, 89, 2023-2029.                                 | 1.2 | 17        |
| 169 | Breathing responses to small inspiratory threshold loads in humans. Journal of Applied Physiology, 1999, 86, 874-880.                                        | 1.2 | 19        |
| 170 | Current Patterns and Electrode Types for Single-Source Electrical Impedance Tomography of the Thorax. Annals of Biomedical Engineering, 1998, 26, 253-259.   | 1.3 | 13        |
| 171 | Nonparametric Block-Structured Modeling of Lung Tissue Strip Mechanics. Annals of Biomedical Engineering, 1998, 26, 242-252.                                 | 1.3 | 38        |
| 172 | A Micromechanical Model of Lung Tissue Rheology. Annals of Biomedical Engineering, 1998, 26, 679-687.                                                        | 1.3 | 17        |
| 173 | An Adaptive Filter to Reduce Cardiogenic Oscillations on Esophageal Pressure Signals. Annals of<br>Biomedical Engineering, 1998, 26, 260-267.                | 1.3 | 23        |
| 174 | Airway-parenchymal interdependence after airway contraction in rat lung explants. Journal of Applied<br>Physiology, 1998, 85, 231-237.                       | 1.2 | 41        |
| 175 | Force heterogeneity in a two-dimensional network model of lung tissue elasticity. Journal of Applied<br>Physiology, 1998, 85, 1223-1229.                     | 1.2 | 46        |
| 176 | Effect of time-varying load on degree of bronchoconstriction in the dog. Journal of Applied Physiology, 1998, 85, 1464-1470.                                 | 1.2 | 12        |
| 177 | Electrical impedance tomography can monitor dynamic hyperinflation in dogs. Journal of Applied<br>Physiology, 1998, 84, 726-732.                             | 1.2 | 40        |
| 178 | Effect of stochastic heterogeneity on lung impedance during acute bronchoconstriction: a model analysis. Journal of Applied Physiology, 1997, 82, 1616-1625. | 1.2 | 122       |
| 179 | Temporal dynamics of acute isovolume bronchoconstriction in the rat. Journal of Applied Physiology, 1997, 82, 55-62.                                         | 1.2 | 71        |
| 180 | A model of the spontaneously breathing patient: applications to intrinsic PEEP and work of breathing.<br>Journal of Applied Physiology, 1997, 82, 1694-1703. | 1.2 | 23        |

| #   | Article                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | A distributed nonlinear model of lung tissue elasticity. Journal of Applied Physiology, 1997, 82, 32-41. | 1.2 | 115       |