Ülo Langel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/529728/publications.pdf

Version: 2024-02-01

360 papers 21,935 citations

79 h-index 12946 131 g-index

372 all docs

372 docs citations

times ranked

372

15412 citing authors

#	Article	IF	Citations
1	Cell-penetrating peptides in protein mimicry and cancer therapeutics. Advanced Drug Delivery Reviews, 2022, 180, 114044.	13.7	55
2	Improvement of Transfection with PepFects Using Organic and Inorganic Materials. Methods in Molecular Biology, 2022, 2383, 555-567.	0.9	7
3	Tissue Analysis of Lung-Targeted Delivery of siRNA and Plasmid DNA. Methods in Molecular Biology, 2022, 2383, 547-553.	0.9	1
4	Utilization of Cell-Penetrating Peptides for In Vivo Delivery of Bioactive Cargo: The Effect of Nanoparticle Formulation. Methods in Molecular Biology, 2022, 2383, 247-253.	0.9	0
5	PepFect14 Signaling and Transfection. Methods in Molecular Biology, 2022, 2383, 229-246.	0.9	2
6	Endpoint and Kinetic Approaches for Assessing Transfection Efficacy in Mammalian Cell Culture. Methods in Molecular Biology, 2022, 2383, 529-545.	0.9	3
7	Cell-Penetrating Peptides. Methods in Molecular Biology, 2022, 2383, 3-32.	0.9	15
8	Mitochondrial Targeting Probes, Drug Conjugates, and Gene Therapeutics. Methods in Molecular Biology, 2022, 2383, 429-446.	0.9	0
9	CRISPR/Cas9 Plasmid Delivery Through the CPP: PepFect14. Methods in Molecular Biology, 2022, 2383, 587-593.	0.9	4
10	An update on cell-penetrating peptides with intracellular organelle targeting. Expert Opinion on Drug Delivery, 2022, 19, 133-146.	5.0	22
11	Studies of cell-penetrating peptides by biophysical methods. Quarterly Reviews of Biophysics, 2022, 55, 1-55.	5.7	20
12	Transfection of Heat Shock Protein 70ÂkDa (HSP70). International Journal of Peptide Research and Therapeutics, 2022, 28, .	1.9	2
13	Mimicry of Dopamine 1 Receptor Signaling with Cell-Penetrating Peptides. International Journal of Peptide Research and Therapeutics, 2021, 27, 83-90.	1.9	3
14	Approaches for the discovery of new cell-penetrating peptides. Expert Opinion on Drug Discovery, 2021, 16, 553-565.	5.0	21
15	Status update in the use of cell-penetrating peptides for the delivery of macromolecular therapeutics. Expert Opinion on Biological Therapy, 2021, 21, 361-370.	3.1	56
16	Cell-Penetrating Peptides Delivering siRNAs: An Overview. Methods in Molecular Biology, 2021, 2282, 329-352.	0.9	22
17	Astrocytes promote ethanol-induced enhancement of intracellular Ca2+ signals through intercellular communication with neurons. IScience, 2021, 24, 102436.	4.1	8
18	Cell-Penetrating Peptides and Transportan. Pharmaceutics, 2021, 13, 987.	4.5	26

#	Article	IF	CITATIONS
19	Amyloid-like Self-Assembly of a Hydrophobic Cell-Penetrating Peptide and Its Use as a Carrier for Nucleic Acids. ACS Applied Bio Materials, 2021, 4, 6404-6416.	4.6	18
20	Cell-Penetrating Peptides Predicted From CASC3, AKIP1, and AHRR Proteins. Frontiers in Pharmacology, 2021, 12, 716226.	3 . 5	3
21	Design and Synthesis of a Peptide-Based Glioma-Targeted Drug Delivery Vector gHope2. Methods in Molecular Biology, 2021, 2355, 117-129.	0.9	1
22	Cell-Penetrating Peptide and siRNA-Mediated Therapeutic Effects on Endometriosis and Cancer In Vitro Models. Pharmaceutics, 2021, 13, 1618.	4.5	16
23	NickFect type of cell-penetrating peptides present enhanced efficiency for microRNA-146a delivery into dendritic cells and during skin inflammation. Biomaterials, 2020, 262, 120316.	11.4	32
24	Transcriptional Profiling Reveals Ribosome Biogenesis, Microtubule Dynamics and Expression of Specific IncRNAs to be Part of a Common Response to Cell-Penetrating Peptides. Biomolecules, 2020, 10, 1567.	4.0	6
25	Intracellular delivery of therapeutic antisense oligonucleotides targeting mRNA coding mitochondrial proteins by cell-penetrating peptides. Journal of Materials Chemistry B, 2020, 8, 10825-10836.	5.8	16
26	Effect of small molecule signaling in PepFect14 transfection. PLoS ONE, 2020, 15, e0228189.	2.5	4
27	Carbonized chitosan encapsulated hierarchical porous zeolitic imidazolate frameworks nanoparticles for gene delivery. Microporous and Mesoporous Materials, 2020, 302, 110200.	4.4	74
28	Gene delivery using cell penetrating peptides-zeolitic imidazolate frameworks. Microporous and Mesoporous Materials, 2020, 300, 110173.	4.4	85
29	Synthesis of NickFects, a New Family of CPPs, by Solid-Phase Peptide Synthesis. Methods in Molecular Biology, 2020, 2103, 239-247.	0.9	1
30	Enhancement of siRNA transfection by the optimization of fatty acid length and histidine content in the CPP. Biomaterials Science, 2019, 7, 4363-4374.	5 . 4	36
31	Recent CPP-based applications in medicine. Expert Opinion on Drug Delivery, 2019, 16, 1183-1191.	5.0	41
32	Protein Delivery and Mimicry., 2019,, 157-193.		0
33	CPP, Cell-Penetrating Peptides. , 2019, , .		29
34	Cell-Translocation Mechanisms of CPPs., 2019,, 359-394.		2
35	Clinical Trials and Commercialization Using CPPs., 2019,, 395-408.		0
36	Therapeutic Potential of CPPs., 2019,, 409-461.		1

#	Article	IF	CITATIONS
37	Classes and Applications of Cell-Penetrating Peptides. , 2019, , 29-82.		4
38	Methods for CPP Functionalization. , 2019, , 83-156.		2
39	Targeting Strategies., 2019,, 195-263.		1
40	Methods for Structural Studies of CPPs. , 2019, , 289-323.		0
41	Kinetics of CPPs Cellular Uptake. , 2019, , 325-337.		0
42	Toxicity and Immune Response., 2019,, 339-357.		0
43	The future of peptides in cancer treatment. Current Opinion in Pharmacology, 2019, 47, 27-32.	3.5	66
44	Tumor gene therapy by systemic delivery of plasmid DNA with cell-penetrating peptides. FASEB BioAdvances, 2019, 1, 105-114.	2.4	26
45	Effective lung-targeted RNAi in mice with peptide-based delivery of nucleic acid. Scientific Reports, 2019, 9, 19926.	3.3	20
46	Methods for Detection and Visualization of CPPs. , 2019, , 265-288.		0
47	Arginine-Rich Cell-Penetrating Peptides Require Nucleolin and Cholesterol-Poor Subdomains for Translocation across Membranes. Bioconjugate Chemistry, 2018, 29, 1168-1177.	3.6	26
48	Cell-Penetrating Peptides Targeting Mitochondria., 2018,, 593-611.		2
49	Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 491-504.	2.6	14
50	Formulation of Stable and Homogeneous Cell-Penetrating Peptide NF55 Nanoparticles for Efficient Gene Delivery InÂVivo. Molecular Therapy - Nucleic Acids, 2018, 10, 28-35.	5.1	25
51	Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles–cell-penetrating peptide. Journal of Biomaterials Applications, 2018, 33, 392-401.	2.4	70
52	Cell-penetrating peptides for siRNA delivery to glioblastomas. Peptides, 2018, 104, 62-69.	2.4	58
53	A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. Nature Genetics, 2018, 50, 979-989.	21.4	168
54	Refinement of a Quantitative Structure–Activity Relationship Model for Prediction of Cell-Penetrating Peptide Based Transfection Systems. International Journal of Peptide Research and Therapeutics, 2017, 23, 91-100.	1.9	7

#	Article	IF	Citations
55	The effect of main urine inhibitors on the activity of different DNA polymerases in loop-mediated isothermal amplification. Expert Review of Molecular Diagnostics, 2017, 17, 403-410.	3.1	12
56	Saturated Fatty Acid Analogues of Cell-Penetrating Peptide PepFect14: Role of Fatty Acid Modification in Complexation and Delivery of Splice-Correcting Oligonucleotides. Bioconjugate Chemistry, 2017, 28, 782-792.	3.6	47
57	The Formation of Nanoparticles between Small Interfering RNA and Amphipathic Cell-Penetrating Peptides. Molecular Therapy - Nucleic Acids, 2017, 7, 1-10.	5.1	41
58	Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide. Molecular Therapy - Methods and Clinical Development, 2017, 5, 221-231.	4.1	16
59	Role of autophagy in cell-penetrating peptide transfection model. Scientific Reports, 2017, 7, 12635.	3.3	23
60	Uptake Mechanism of Cell-Penetrating Peptides. Advances in Experimental Medicine and Biology, 2017, 1030, 255-264.	1.6	70
61	Implementation of antimicrobial peptides for sample preparation prior to nucleic acid amplification in point-of-care settings. Expert Review of Molecular Diagnostics, 2017, 17, 1117-1125.	3.1	1
62	Magnetic Nanoparticle Assisted Self-assembly of Cell Penetrating Peptides-Oligonucleotides Complexes for Gene Delivery. Scientific Reports, 2017, 7, 9159.	3.3	71
63	Effective in vivo gene delivery with reduced toxicity, achieved by charge and fatty acid -modified cell penetrating peptide. Scientific Reports, 2017, 7, 17056.	3.3	39
64	Graphene oxide nanosheets in complex with cell penetrating peptides for oligonucleotides delivery. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2334-2341.	2.4	77
65	Comparison of Peptide- and Lipid-Based Delivery of miR-34a-5p Mimic into PPC-1 Cells. Nucleic Acid Therapeutics, 2017, 27, 295-302.	3.6	13
66	Cell-penetrating peptides with intracellular organelle targeting. Expert Opinion on Drug Delivery, 2017, 14, 245-255.	5.0	81
67	Cellâ€penetrating peptides recruit type A scavenger receptors to the plasma membrane for cellular delivery of nucleic acids. FASEB Journal, 2017, 31, 975-988.	0.5	30
68	Central Administration of Galanin Receptor 1 Agonist Boosted Insulin Sensitivity in Adipose Cells of Diabetic Rats. Journal of Diabetes Research, 2016, 2016, 1-9.	2.3	9
69	Cav1.2 and Cav1.3 Lâ€type calcium channels independently control short―and longâ€term sensitization to pain. Journal of Physiology, 2016, 594, 6607-6626.	2.9	47
70	Pharmacological stimulation of GAL1R but not GAL2R attenuates kainic acid-induced neuronal cell death in the rat hippocampus. Neuropeptides, 2016, 58, 83-92.	2.2	6
71	Glycosaminoglycans are required for translocation of amphipathic cell-penetrating peptides across membranes. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1860-1867.	2.6	21
72	Optimization of in vivo DNA delivery with NickFect peptide vectors. Journal of Controlled Release, 2016, 241, 135-143.	9.9	56

#	Article	IF	Citations
73	Pre-administration of PepFect6-microRNA-146a nanocomplexes inhibits inflammatory responses in keratinocytes and in a mouse model of irritant contact dermatitis. Journal of Controlled Release, 2016, 235, 195-204.	9.9	42
74	Ala 5 -galanin (2–11) is a GAL 2 R specific galanin analogue. Neuropeptides, 2016, 60, 75-82.	2.2	18
75	Combination with antimicrobial peptide lyses improves loop-mediated isothermal amplification based method for Chlamydia trachomatis detection directly in urine sample. BMC Infectious Diseases, 2016, 16, 329.	2.9	17
76	Characteristics of Cell-Penetrating Peptide/Nucleic Acid Nanoparticles. Molecular Pharmaceutics, 2016, 13, 172-179.	4.6	44
77	Recent <i>in vivo</i> advances in cell-penetrating peptide-assisted drug delivery. Expert Opinion on Drug Delivery, 2016, 13, 373-387.	5.0	115
78	pH-responsive PepFect cell-penetrating peptides. International Journal of Pharmaceutics, 2016, 501, 32-38.	5.2	36
79	Role of scavenger receptors in peptide-based delivery of plasmid DNA across a blood–brain barrier model. International Journal of Pharmaceutics, 2016, 500, 128-135.	5 . 2	33
80	Intracellular Target-Specific Accretion of Cell Penetrating Peptides and Bioportides: Ultrastructural and Biological Correlates. Bioconjugate Chemistry, 2016, 27, 121-129.	3.6	14
81	Methods to follow intracellular trafficking of cell-penetrating peptides. Journal of Drug Targeting, 2016, 24, 508-519.	4.4	17
82	PepFect6 Mediated SiRNA Delivery into Organotypic Cultures. Methods in Molecular Biology, 2016, 1364, 27-35.	0.9	3
83	Quantitative Microplate Assay for Real-Time Nuclease Kinetics. PLoS ONE, 2016, 11, e0154099.	2.5	3
84	<scp>PDGF</scp> beta targeting in cervical cancer cells suggest a fineâ€tuning of compensatory signalling pathways to sustain tumourigenic stimulation. Journal of Cellular and Molecular Medicine, 2015, 19, 371-382.	3.6	8
85	A High-Throughput Kinetic Assay for RNA-Cleaving Deoxyribozymes. PLoS ONE, 2015, 10, e0135984.	2.5	5
86	PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. Journal of Controlled Release, 2015, 209, 238-247.	9.9	110
87	Novel Efficient Cell-Penetrating, Peptide-Mediated Strategy for Enhancing Telomerase Inhibitor Oligonucleotides. Nucleic Acid Therapeutics, 2015, 25, 306-310.	3.6	5
88	The role of endocytosis in the uptake and intracellular trafficking of PepFect14–nucleic acid nanocomplexes via class A scavenger receptors. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 3205-3216.	2.6	17
89	Galanin receptor ligands. SpringerPlus, 2015, 4, L18.	1.2	5
90	Peptide Nanoparticle Delivery of Charge-Neutral Splice-Switching Morpholino Oligonucleotides. Nucleic Acid Therapeutics, 2015, 25, 65-77.	3.6	18

#	Article	IF	Citations
91	Galanin pathogenic mutations in temporal lobe epilepsy. Human Molecular Genetics, 2015, 24, 3082-3091.	2.9	23
92	The Antimicrobial and Antiviral Applications of Cell-Penetrating Peptides. Methods in Molecular Biology, 2015, 1324, 223-245.	0.9	34
93	Novel cellâ€penetrating peptide targeting mitochondria. FASEB Journal, 2015, 29, 4589-4599.	0.5	105
94	Cell-Penetrating Peptides. Methods in Molecular Biology, 2015, 1324, v-viii.	0.9	18
95	Optimized luciferase assay for cell-penetrating peptide-mediated delivery of short oligonucleotides. Analytical Biochemistry, 2015, 484, 136-142.	2.4	20
96	A convergent uptake route for peptide- and polymer-based nucleotide delivery systems. Journal of Controlled Release, 2015, 206, 58-66.	9.9	35
97	Galanin receptors as a potential target for neurological disease. Expert Opinion on Therapeutic Targets, 2015, 19, 1665-1676.	3.4	19
98	Application of CPPs for Brain Delivery. Methods in Molecular Biology, 2015, 1324, 349-356.	0.9	10
99	Classes of Cell-Penetrating Peptides. Methods in Molecular Biology, 2015, 1324, 3-28.	0.9	53
100	SCARA Involvement in the Uptake of Nanoparticles Formed by Cell-Penetrating Peptides. Methods in Molecular Biology, 2015, 1324, 163-174.	0.9	6
101	CPP-Based Delivery System for In Vivo Gene Delivery. Methods in Molecular Biology, 2015, 1324, 339-347.	0.9	7
102	PepFects and NickFects for the Intracellular Delivery of Nucleic Acids. Methods in Molecular Biology, 2015, 1324, 303-315.	0.9	31
103	Toxicity, Immunogenicity, Uptake, and Kinetics Methods for CPPs. Methods in Molecular Biology, 2015, 1324, 133-148.	0.9	22
104	Peptide-Ligand Binding Modeling of siRNA with Cell-Penetrating Peptides. BioMed Research International, 2014, 2014, 1-7.	1.9	12
105	Peptide-based vectors: recent developments. Biomolecular Concepts, 2014, 5, 479-488.	2.2	21
106	GABAergic Terminals Are a Source of Galanin to Modulate Cholinergic Neuron Development in the Neonatal Forebrain. Cerebral Cortex, 2014, 24, 3277-3288.	2.9	10
107	Peptide-Based Delivery of Oligonucleotides Across Blood–Brain Barrier Model. International Journal of Peptide Research and Therapeutics, 2014, 20, 169-178.	1.9	21
108	Rational design of a series of novel amphipathic cell-penetrating peptides. International Journal of Pharmaceutics, 2014, 464, 111-116.	5.2	30

#	Article	lF	CITATIONS
109	Cell-Penetrating Peptides: Design, Synthesis, and Applications. ACS Nano, 2014, 8, 1972-1994.	14.6	776
110	Targeting prion propagation using peptide constructs with signal sequence motifs. Archives of Biochemistry and Biophysics, 2014, 564, 254-261.	3.0	17
111	Porous Silicon–Cell Penetrating Peptide Hybrid Nanocarrier for Intracellular Delivery of Oligonucleotides. Molecular Pharmaceutics, 2014, 11, 382-390.	4.6	28
112	Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins. Journal of Controlled Release, 2014, 192, 103-113.	9.9	67
113	Novel Target for Peptide-Based Imaging and Treatment of Brain Tumors. Molecular Cancer Therapeutics, 2014, 13, 996-1007.	4.1	54
114	Sensitive and Rapid Detection of Chlamydia trachomatis by Recombinase Polymerase Amplification Directly from Urine Samples. Journal of Molecular Diagnostics, 2014, 16, 127-135.	2.8	120
115	Effects of cargo molecules on membrane perturbation caused by transportan10 based cell-penetrating peptides. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3118-3129.	2.6	28
116	Cell-penetrating peptide secures an efficient endosomal escape of an intact cargo upon a brief photo-induction. Cellular and Molecular Life Sciences, 2013, 70, 4825-4839.	5 . 4	21
117	Novel Galanin Receptor Subtype Specific Ligand in Depression Like Behavior. Neurochemical Research, 2013, 38, 398-404.	3.3	18
118	Development of a novel nanoparticle by dual modification with the pluripotential cellâ€penetrating peptide PepFect6 for cellular uptake, endosomal escape, and decondensation of an siRNA core complex. Biopolymers, 2013, 100, 698-704.	2.4	9
119	New generation of efficient peptide-based vectors, NickFects, for the delivery of nucleic acids. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1365-1373.	2.6	78
120	Inhibition of Autophagy via p53-Mediated Disruption of ULK1 in a SCA7 Polyglutamine Disease Model. Journal of Molecular Neuroscience, 2013, 50, 586-599.	2.3	26
121	Dendritic Glutamate Receptor mRNAs Show Contingent Local Hotspot-Dependent Translational Dynamics. Cell Reports, 2013, 5, 114-125.	6.4	13
122	PepFect14 Peptide Vector for Efficient Gene Delivery in Cell Cultures. Molecular Pharmaceutics, 2013, 10, 199-210.	4.6	83
123	Peptide-Based Glioma-Targeted Drug Delivery Vector gHoPe2. Bioconjugate Chemistry, 2013, 24, 305-313.	3.6	42
124	Intracellular translocation and differential accumulation of cell-penetrating peptides in bovine spermatozoa: evaluation of efficient delivery vectors that do not compromise human sperm motility. Human Reproduction, 2013, 28, 1874-1889.	0.9	40
125	PepFect15, a novel endosomolytic cell-penetrating peptide for oligonucleotide delivery via scavenger receptors. International Journal of Pharmaceutics, 2013, 441, 242-247.	5.2	46
126	Novel systemically active galanin receptor 2 ligands in depressionâ€like behavior. Journal of Neurochemistry, 2013, 127, 114-123.	3.9	35

#	Article	IF	CITATIONS
127	Molecular Parameters of siRNA–Cell Penetrating Peptide Nanocomplexes for Efficient Cellular Delivery. ACS Nano, 2013, 7, 3797-3807.	14.6	135
128	Modeling the endosomal escape of cell-penetrating peptides using a transmembrane pH gradient. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1198-1204.	2.6	39
129	Therapeutic potential of cell-penetrating peptides. Therapeutic Delivery, 2013, 4, 573-591.	2.2	84
130	Galanin, through GalR1 but not GalR2 receptors, decreases motivation at times of high appetitive behavior. Behavioural Brain Research, 2013, 239, 90-93.	2.2	8
131	Differential Endosomal Pathways for Radically Modified Peptide Vectors. Bioconjugate Chemistry, 2013, 24, 1721-1732.	3.6	52
132	GalR3 activation promotes adult neural stem cell survival in response to a diabetic <i>milieu</i> Journal of Neurochemistry, 2013, 127, 209-220.	3.9	30
133	Killer Bee Molecules: Antimicrobial Peptides as Effector Molecules to Target Sporogonic Stages of Plasmodium. PLoS Pathogens, 2013, 9, e1003790.	4.7	52
134	Organellar oligopeptidase (OOP) provides a complementary pathway for targeting peptide degradation in mitochondria and chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3761-9.	7.1	50
135	Identification of Cell-Penetrating Peptides That Are Bactericidal to Neisseria meningitidis and Prevent Inflammatory Responses upon Infection. Antimicrobial Agents and Chemotherapy, 2013, 57, 3704-3712.	3.2	23
136	Transfection of Infectious RNA and DNA/RNA Layered Vectors of Semliki Forest Virus by the Cell-Penetrating Peptide Based Reagent PepFect6. PLoS ONE, 2013, 8, e69659.	2.5	7
137	Cell-penetrating peptides from cell cultures to in vivo applications. Frontiers in Bioscience - Elite, 2013, E5, 509-516.	1.8	21
138	Galanin Receptors and Ligands. Frontiers in Endocrinology, 2012, 3, 146.	3 . 5	116
139	Cell-penetrating Peptides Split into Two Groups Based on Modulation of Intracellular Calcium Concentration. Journal of Biological Chemistry, 2012, 287, 16880-16889.	3.4	39
140	Modulating Anti-MicroRNA-21 Activity and Specificity Using Oligonucleotide Derivatives and Length Optimization. ISRN Pharmaceutics, 2012, 2012, 1-7.	1.0	7
141	Efficient Intracellular Delivery of Nucleic Acid Pharmaceuticals Using Cell-Penetrating Peptides. Accounts of Chemical Research, 2012, 45, 1132-1139.	15.6	272
142	Intracellular Delivery of Short Interfering RNA in Rat Organ of Corti Using a Cell-penetrating Peptide PepFect6. Molecular Therapy - Nucleic Acids, 2012, 1, e61.	5.1	17
143	Human Protein 53-Derived Cell-Penetrating Peptides. International Journal of Peptide Research and Therapeutics, 2012, 18, 291-297.	1.9	6
144	Tumour Targeting with Rationally Modified Cell-Penetrating Peptides. International Journal of Peptide Research and Therapeutics, 2012, 18, 361-371.	1,9	19

#	Article	IF	CITATIONS
145	CXCR4 Stimulates Macropinocytosis: Implications for Cellular Uptake of Arginine-Rich Cell-Penetrating Peptides and HIV. Chemistry and Biology, 2012, 19, 1437-1446.	6.0	103
146	Solid formulation of cell-penetrating peptide nanocomplexes with siRNA and their stability in simulated gastric conditions. Journal of Controlled Release, 2012, 162, 1-8.	9.9	51
147	Scavenger receptorâ€mediated uptake of cellâ€penetrating peptide nanocomplexes with oligonucleotides. FASEB Journal, 2012, 26, 1172-1180.	0.5	127
148	The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 502-511.	2.6	80
149	Influence of stearyl and trifluoromethylquinoline modifications of the cell penetrating peptide TP10 on its interaction with a lipid membrane. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 915-924.	2.6	36
150	Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. BMC Neuroscience, 2012, 13, 86.	1.9	27
151	Applications of Cell-Penetrating Peptides for Tumor Targeting and Future Cancer Therapies. Pharmaceuticals, 2012, 5, 991-1007.	3.8	115
152	Bioportide: an emergent concept of bioactive cell-penetrating peptides. Cellular and Molecular Life Sciences, 2012, 69, 2951-2966.	5 . 4	34
153	Impairment of GABAB receptor dimer by endogenous 14-3-3ζ in chronic pain conditions. EMBO Journal, 2012, 31, 3239-3251.	7.8	56
154	Cell-penetrating peptides for the delivery of nucleic acids. Expert Opinion on Drug Delivery, 2012, 9, 823-836.	5.0	125
155	Cell-penetrating peptides as antifungals towards Malassezia sympodialis. Letters in Applied Microbiology, 2012, 54, 39-44.	2.2	19
156	Cell-Penetrating Peptides, PepFects, Show No Evidence of Toxicity and Immunogenicity <i>In Vitro</i> and <i>In Vivo</i> . Bioconjugate Chemistry, 2011, 22, 2255-2262.	3.6	91
157	Peptide Nanoparticles for Oligonucleotide Delivery. Progress in Molecular Biology and Translational Science, 2011, 104, 397-426.	1.7	13
158	Mimicry of Protein Function with Cell-Penetrating Peptides. Methods in Molecular Biology, 2011, 683, 233-247.	0.9	19
159	Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Research, 2011, 39, 3972-3987.	14.5	262
160	Retro-inversion of certain cell-penetrating peptides causes severe cellular toxicity. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1544-1551.	2.6	29
161	Novel galanin receptor subtype specific ligands in feeding regulation. Neurochemistry International, 2011, 58, 714-720.	3.8	35
162	Toxicity Methods for CPPs. Methods in Molecular Biology, 2011, 683, 195-205.	0.9	6

#	Article	IF	Citations
163	Classes and Prediction of Cell-Penetrating Peptides. Methods in Molecular Biology, 2011, 683, 3-19.	0.9	113
164	Comparison of CPP Uptake Methods. Methods in Molecular Biology, 2011, 683, 207-217.	0.9	24
165	Therapeutic delivery opportunities, obstacles and applications for cell-penetrating peptides. Therapeutic Delivery, 2011, 2, 71-82.	2.2	18
166	Penetration without cells: Membrane translocation of cell-penetrating peptides in the model giant plasma membrane vesicles. Journal of Controlled Release, 2011, 153, 117-125.	9.9	89
167	Insights into the cellular trafficking of splice redirecting oligonucleotides complexed with chemically modified cell-penetrating peptides. Journal of Controlled Release, 2011, 153, 163-172.	9.9	27
168	Differences in DNA Condensation and Release by Lysine and Arginine Homopeptides Govern Their DNA Delivery Efficiencies. Molecular Pharmaceutics, 2011, 8, 1729-1741.	4.6	66
169	NickFects, Phosphorylated Derivatives of Transportan 10 for Cellular Delivery of Oligonucleotides. International Journal of Peptide Research and Therapeutics, 2011, 17, 147-157.	1.9	51
170	Novel viral vectors utilizing intron splice-switching to activate genome rescue, expression and replication in targeted cells. Virology Journal, 2011, 8, 243.	3.4	9
171	Mechanisms of Cellular Uptake of Cell-Penetrating Peptides. Journal of Biophysics, 2011, 2011, 1-10.	0.8	747
172	Apolar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E359-E364.	7.1	52
173	PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Research, 2011, 39, 5284-5298.	14.5	199
174	Mapping of Protein Transduction Pathways with Fluorescent Microscopy. Methods in Molecular Biology, 2011, 683, 165-179.	0.9	4
175	Characterization of Cellular Internalization Pathways for CPP-Mediated Oligonucleotide Delivery. Methods in Molecular Biology, 2011, 683, 219-230.	0.9	3
176	Application of PepFect Peptides for the Delivery of Splice-Correcting Oligonucleotides. Methods in Molecular Biology, 2011, 683, 361-373.	0.9	18
177	PAIR Technology: Exon-Specific RNA-Binding Protein Isolation in Live Cells. Methods in Molecular Biology, 2011, 683, 473-486.	0.9	9
178	Cell-Penetrating Peptides-Based Strategies for the Delivery of Splice Redirecting Antisense Oligonucleotides. Methods in Molecular Biology, 2011, 764, 75-89.	0.9	7
179	Prediction of Cell-Penetrating Peptides Using Artificial Neural Networks. Current Computer-Aided Drug Design, 2010, 6, 79-89.	1.2	49
180	Peptide-Based Matrices as Drug Delivery Vehicles. Current Pharmaceutical Design, 2010, 16, 1167-1178.	1.9	27

#	Article	lF	Citations
181	Distribution of CPP-Protein Complexes in Freshly Resected Human Tissue Material. Pharmaceuticals, 2010, 3, 621-635.	3.8	1
182	Binding of Chimeric Peptides M617 and M871 to Galanin Receptor Type 3 Reveals Characteristics of Galanin Receptor–Ligand Interaction. International Journal of Peptide Research and Therapeutics, 2010, 16, 17-22.	1.9	17
183	Novel Fatty Acid Modifications of Transportan 10. International Journal of Peptide Research and Therapeutics, 2010, 16, 247-255.	1.9	12
184	Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy. Journal of Controlled Release, 2010, 141, 42-51.	9.9	113
185	Characterization of Bioactive Cell Penetrating Peptides from Human Cytochrome c: Protein Mimicry and the Development of a Novel Apoptogenic Agent. Chemistry and Biology, 2010, 17, 735-744.	6.0	51
186	Knockdown of L Calcium Channel Subtypes: Differential Effects in Neuropathic Pain. Journal of Neuroscience, 2010, 30, 1073-1085.	3.6	97
187	Determining receptor–ligand interaction of human galanin receptor type 3. Neurochemistry International, 2010, 57, 804-811.	3.8	13
188	Assessing the uptake kinetics and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence assay. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 338-343.	2.6	64
189	Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1119-1128.	2.6	264
190	In vivo biodistribution and efficacy of peptide mediated delivery. Trends in Pharmacological Sciences, 2010, 31, 528-535.	8.7	127
191	Cellular Internalization Kinetics of (Luciferin-)Cell-Penetrating Peptide Conjugates. Bioconjugate Chemistry, 2010, 21, 1662-1672.	3.6	42
192	A novel GalR2-specific peptide agonist. Neuropeptides, 2009, 43, 187-192.	2.2	40
193	A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. Journal of Controlled Release, 2009, 134, 221-227.	9.9	163
194	CPP–protein constructs induce a population of non-acidic vesicles during trafficking through endo-lysosomal pathway. Journal of Controlled Release, 2009, 139, 108-117.	9.9	50
195	Analysis of in vitro toxicity of five cell-penetrating peptides by metabolic profiling. Toxicology, 2009, 265, 87-95.	4.2	85
196	Design of a Tumor Homing Cell-Penetrating Peptide for Drug Delivery. International Journal of Peptide Research and Therapeutics, 2009, 15, 11-15.	1.9	58
197	An improved synthesis of releasable luciferin–CPP conjugates. Tetrahedron Letters, 2009, 50, 4731-4733.	1.4	8
198	Elucidating cell-penetrating peptide mechanisms of action for membrane interaction, cellular uptake, and translocation utilizing the hydrophobic counter-anion pyrenebutyrate. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2509-2517.	2.6	119

#	Article	IF	CITATIONS
199	Protein Delivery with Transportans Is Mediated by Caveolae Rather Than Flotillin-Dependent Pathways. Bioconjugate Chemistry, 2009, 20, 877-887.	3.6	54
200	Chemically modified cell-penetrating peptides for the delivery of nucleic acids. Expert Opinion on Drug Delivery, 2009, 6, 1195-1205.	5.0	56
201	Twenty-Five Years of Galanin Research. , 2009, , 237-260.		1
202	Co-transduction of Sleeping Beauty Transposase and Donor Plasmid via a Cell-penetrating Peptide: A simple one step Method. International Journal of Peptide Research and Therapeutics, 2008, 14, 58-63.	1.9	10
203	Cholesterol prevents interaction of the cellâ€penetrating peptide transportan with model lipid membranes. Journal of Peptide Science, 2008, 14, 1303-1308.	1.4	23
204	Predicting cell-penetrating peptides. Advanced Drug Delivery Reviews, 2008, 60, 572-579.	13.7	140
205	Design of a Tumor-Homing Cell-Penetrating Peptide. Bioconjugate Chemistry, 2008, 19, 70-75.	3.6	124
206	Distinct Uptake Routes of Cell-Penetrating Peptide Conjugates. Bioconjugate Chemistry, 2008, 19, 2535-2542.	3.6	159
207	Cell-Penetrating Peptide-Mediated Delivery of Peptide Nucleic Acid (PNA) Oligomers. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4889.	0.3	0
208	Selective stimulation of GalR1 and GalR2 in rat substantia gelatinosa reveals a cellular basis for the anti- and pro-nociceptive actions of galanin. Pain, 2008, 137, 138-146.	4.2	33
209	Relevance of the N-terminal NLS-like sequence of the prion protein for membrane perturbation effects. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 206-213.	2.6	16
210	Cell-Penetrating Peptide TP10 Shows Broad-Spectrum Activity against both <i>Plasmodium falciparum </i> and <i>Trypanosoma brucei brucei </i> Antimicrobial Agents and Chemotherapy, 2008, 52, 3414-3417.	3.2	48
211	Galanin Protects Against Behavioral and Neurochemical Correlates of Opiate Reward. Neuropsychopharmacology, 2008, 33, 1864-1873.	5.4	50
212	µâ€Opioid receptor activation in live cells. FASEB Journal, 2008, 22, 3537-3548.	0.5	37
213	c-Jun Supports Ribosomal RNA Processing and Nucleolar Localization of RNA Helicase DDX21. Journal of Biological Chemistry, 2008, 283, 7046-7053.	3.4	46
214	Antiprion properties of prion proteinâ€derived cellâ€penetrating peptides. FASEB Journal, 2008, 22, 2177-2184.	0.5	35
215	Characterization of a Novel Cytotoxic Cellâ€penetrating Peptide Derived From p14ARF Protein. Molecular Therapy, 2008, 16, 115-123.	8.2	99
216	Differential Role of Galanin Receptors in the Regulation of Depression-Like Behavior and Monoamine/Stress-Related Genes at the Cell Body Level. Neuropsychopharmacology, 2008, 33, 2573-2585.	5.4	94

#	Article	IF	CITATIONS
217	Splice-switching efficiency and specificity for oligonucleotides with locked nucleic acid monomers. Biochemical Journal, 2008, 412, 307-313.	3.7	31
218	Design, synthesis and properties of novel powerful antioxidants, glutathione analogues. Free Radical Research, 2007, 41, 779-787.	3.3	35
219	Applications of cell-penetrating peptides in regulation of gene expression. Biochemical Society Transactions, 2007, 35, 770-774.	3.4	49
220	Intracerebroventricular administration of galanin or galanin receptor subtype 1 agonist M617 induces c-Fos activation in central amygdala and dorsomedial hypothalamus. Peptides, 2007, 28, 1120-1124.	2.4	30
221	A Novel Cell-penetrating Peptide, M918, for Efficient Delivery of Proteins and Peptide Nucleic Acids. Molecular Therapy, 2007, 15, 1820-1826.	8.2	148
222	Protein Delivery by the Cell-Penetrating Peptide YTA2. Bioconjugate Chemistry, 2007, 18, 170-174.	3.6	41
223	Mechanism of the Cell-Penetrating Peptide Transportan 10 Permeation of Lipid Bilayers. Biophysical Journal, 2007, 92, 2434-2444.	0.5	161
224	Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study. Biochemical Journal, 2007, 407, 285-292.	3.7	217
225	Delivery of short interfering RNA using endosomolytic cellâ€penetrating peptides. FASEB Journal, 2007, 21, 2664-2671.	0.5	293
226	Assessing the delivery efficacy and internalization route of cell-penetrating peptides. Nature Protocols, 2007, 2, 2043-2047.	12.0	53
227	Molecular characterization of the ligand binding site of the human galanin receptor type 2, identifying subtype selective interactions. Journal of Neurochemistry, 2007, 103, 1774-1784.	3.9	21
228	Differential membrane perturbation caused by the cell penetrating peptide Tp10 depending on attached cargo. FEBS Letters, 2007, 581, 2389-2393.	2.8	70
229	Role of cysteine 341 and arginine 348 of GLP-1 receptor in G-protein coupling. Molecular Biology Reports, 2007, 34, 53-60.	2.3	5
230	Targeting cytokine expression in glial cells by cellular delivery of an NF-κB decoy. Journal of Molecular Neuroscience, 2007, 31, 209-219.	2.3	17
231	In vivo identification of ribonucleoprotein-RNA interactions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1557-1562.	7.1	86
232	Regulation of Kindling Epileptogenesis by Hippocampal Galanin Type 1 and Type 2 Receptors: The Effects of Subtype-Selective Agonists and the Role of G-Protein-Mediated Signaling. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 700-708.	2.5	88
233	Cell-penetrating peptides—A brief introduction. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 260-263.	2.6	138
234	Structure–activity relationship study of the cell-penetrating peptide pVEC. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 721-729.	2.6	85

#	Article	IF	Citations
235	N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. Biochemical and Biophysical Research Communications, 2006, 348, 379-385.	2.1	88
236	Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Current Opinion in Pharmacology, 2006, 6, 509-514.	3.5	294
237	Studying the uptake of cell-penetrating peptides. Nature Protocols, 2006, 1, 1001-1005.	12.0	64
238	A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells. Nature Protocols, 2006, 1, 920-927.	12.0	38
239	Immunoprecipitation of mRNA-protein complexes. Nature Protocols, 2006, 1, 577-580.	12.0	204
240	Uptake Mechanisms of Cell-Penetrating Peptides Derived from the Alzheimer's Disease Associated Gamma-Secretase Complex. International Journal of Peptide Research and Therapeutics, 2006, 12, 105-114.	1.9	16
241	Overcoming methotrexate resistance in breast cancer tumour cells by the use of a new cell-penetrating peptide. Biochemical Pharmacology, 2006, 71, 416-425.	4.4	183
242	Activation of peripheral galanin receptors: Differential effects on nociception. Pharmacology Biochemistry and Behavior, 2006, 85, 273-280.	2.9	24
243	Induction of splice correction by cell-penetrating peptide nucleic acids. Journal of Gene Medicine, 2006, 8, 1262-1273.	2.8	120
244	Cell-penetrating peptides: A comparative membrane toxicity study. Analytical Biochemistry, 2005, 345, 55-65.	2.4	243
245	Galanin and Its Receptors in Neurological Disorders. NeuroMolecular Medicine, 2005, 7, 157-180.	3.4	92
246	Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Advanced Drug Delivery Reviews, 2005, 57, 529-545.	13.7	732
247	Manual Solid Phase Synthesis of Glutathione Analogs. , 2005, 298, 241-257.		9
248	Evaluation of transportan 10 in PEI mediated plasmid delivery assay. Journal of Controlled Release, 2005, 103, 511-523.	9.9	72
249	TP10, a delivery vector for decoy oligonucleotides targeting the Myc protein. Journal of Controlled Release, 2005, 110, 189-201.	9.9	64
250	Assessment of new functional roles for galanin in the CNS. Neuropeptides, 2005, 39, 323-326.	2.2	16
251	Galanin receptor ligands. Neuropeptides, 2005, 39, 143-146.	2.2	50
252	Galnon – a low-molecular weight ligand of the galanin receptors. Neuropeptides, 2005, 39, 161-163.	2.2	25

#	Article	IF	Citations
253	Important pharmacophores for binding to galanin receptor 2. Neuropeptides, 2005, 39, 169-171.	2.2	26
254	Intracerebroventricular administration of galanin decreases free water intake and operant water reinforcer efficacy in water-restricted rats. Neuropeptides, 2005, 39, 117-124.	2.2	18
255	Multiple interaction sites of galnon trigger its biological effects. Neuropeptides, 2005, 39, 547-558.	2.2	29
256	A Galanin Receptor Subtype 1 Specific Agonist. International Journal of Peptide Research and Therapeutics, 2005, 11, 17-27.	1.9	46
257	Cell-Penetrating Mimics of Agonist-Activated G-Protein Coupled Receptors. International Journal of Peptide Research and Therapeutics, 2005, 11, 237-247.	1.9	20
258	Prediction of Cell-Penetrating Peptides. International Journal of Peptide Research and Therapeutics, 2005, 11, 249-259.	1.9	86
259	Cell-Penetrating Peptides: Mechanisms and Applications. Current Pharmaceutical Design, 2005, 11, 3597-3611.	1.9	216
260	Translocation of Dynorphin Neuropeptides across the Plasma Membrane. Journal of Biological Chemistry, 2005, 280, 26360-26370.	3.4	68
261	Cellular Delivery of Peptide Nucleic Acid by Cell-Penetrating Peptides. , 2005, 298, 131-141.		14
262	Synthesis of Cell-Penetrating Peptides for Cargo Delivery. , 2005, 298, 77-89.		12
263	Functional Domains of the Mouse $\hat{1}^2$ 3-Adrenoceptor Associated with Differential G Protein Coupling. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1354-1361.	2.5	25
264	Galanin and perseveration. Brain Research, 2005, 1041, 143-148.	2.2	2
265	Internalisation of cell-penetrating peptides into tobacco protoplasts. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1669, 101-107.	2.6	49
266	Effects of galnon, a non-peptide galanin-receptor agonist, on insulin release from rat pancreatic islets. Biochemical and Biophysical Research Communications, 2005, 328, 213-220.	2.1	17
267	Free uptake of cell-penetrating peptides by fission yeast. FEBS Letters, 2005, 579, 4873-4878.	2.8	25
268	Uptake of cell-penetrating peptides in yeasts. FEBS Letters, 2005, 579, 5217-5222.	2.8	43
269	Cell Transduction Pathways of Transportans. Bioconjugate Chemistry, 2005, 16, 1399-1410.	3.6	76
270	Passage of cell-penetrating peptides across a human epithelial cell layer in vitro. Biochemical Journal, 2004, 377, 69-76.	3.7	118

#	Article	IF	CITATIONS
271	Cell entry and antimicrobial properties of eukaryotic cell―penetrating peptides. FASEB Journal, 2004, 18, 1-15.	0.5	127
272	Galanin Acts at GalR1 Receptors in Spinal Antinociception: Synergy with Morphine and AP-5. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 574-582.	2.5	63
273	Galanin type 2 receptors regulate neuronal survival, susceptibility to seizures and seizure-induced neurogenesis in the dentate gyrus. European Journal of Neuroscience, 2004, 19, 3235-3244.	2.6	105
274	Regulation of feeding by galnon. Neuropeptides, 2004, 38, 55-61.	2.2	21
275	Targeting of antisense PNA oligomers to human galanin receptor type 1 mRNA. Neuropeptides, 2004, 38, 316-324.	2.2	21
276	The use of cell-penetrating peptides as a tool for gene regulation. Drug Discovery Today, 2004, 9, 395-402.	6.4	185
277	Protein Cargo Delivery Properties of Cell-Penetrating Peptides. A Comparative Study. Bioconjugate Chemistry, 2004, 15, 1246-1253.	3.6	181
278	Intracerebroventricularly administered galanin does not alter operant reaction time or differentially reinforced high rate schedule operant responding in rats. Neuroscience Letters, 2004, 369, 245-249.	2.1	7
279	Systemic galnon, a low-molecular weight galanin receptor agonist, reduces heat hyperalgesia in rats with nerve injury. European Journal of Pharmacology, 2003, 482, 133-137.	3.5	28
280	A brief introduction to cell-penetrating peptides. Journal of Molecular Recognition, 2003, 16, 227-233.	2.1	188
281	Down-regulation of amyloid precursor protein by peptide nucleic acid oligomer in cultured rat primary neurons and astrocytes. Neuroscience Letters, 2003, 336, 55-59.	2.1	22
282	Amyloid precursor protein carboxy-terminal fragments modulate G-proteins and adenylate cyclase activity in Alzheimer's disease brain. Molecular Brain Research, 2003, 117, 73-82.	2.3	9
283	Different role of intracellular loops of glucagon-like peptide-1 receptor in G-protein coupling. Regulatory Peptides, 2003, 111, 137-144.	1.9	41
284	In vitro Uptake and Stability Study of pVEC and Its All-D Analog. Biological Chemistry, 2003, 384, 387-93.	2.5	124
285	The neuropeptide galanin modulates behavioral and neurochemical signs of opiate withdrawal. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9028-9033.	7.1	82
286	Synthesis of Cell-Penetrating Peptide-PNA Constructs. , 2002, 208, 225-236.		10
287	Anticonvulsant activity of a nonpeptide galanin receptor agonist. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7136-7141.	7.1	125
288	Overexpression of Protein-Tyrosine Phosphatase PTP $\ddot{l}f$ Is Linked to Impaired Glucose-Induced Insulin Secretion in Hereditary Diabetic Goto-Kakizaki Rats. Biochemical and Biophysical Research Communications, 2002, 291, 945-950.	2.1	49

#	Article	IF	CITATIONS
289	Expression of galanin receptor-1 (GALR1) in the rat trigeminal ganglia and molar teeth. Neuroscience Research, 2002, 42, 197-207.	1.9	13
290	Novel Mastoparan Analogs Induce Differential Secretion from Mast Cells. Chemistry and Biology, 2002, 9, 63-70.	6.0	13
291	Intracellular third loop of galanin receptor as G-protein interaction site., 2002,, 662-663.		0
292	Secondary Structure and Position of the Cell-Penetrating Peptide Transportan in SDS Micelles As Determined by NMR. Biochemistry, 2001, 40, 3141-3149.	2.5	102
293	VE-Cadherin-Derived Cell-Penetrating Peptide, pVEC, with Carrier Functions. Experimental Cell Research, 2001, 269, 237-244.	2.6	247
294	Characterisation of a new chimeric ligand for galanin receptors: galanin(1–13)-[d-Trp32]-neuropeptide Y(25–36)amide. Regulatory Peptides, 2001, 102, 15-19.	1.9	7
295	Interaction and structure induction of cell-penetrating peptides in the presence of phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1512, 77-89.	2.6	137
296	Cargo delivery kinetics of cell-penetrating peptides. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1515, 101-109.	2.6	256
297	Fluorescence Correlation Spectroscopy Detects Galanin Receptor Diversity on Insulinoma Cells. Biochemistry, 2001, 40, 10839-10845.	2.5	50
298	Cellular Internalization of a Cargo Complex with a Novel Peptide Derived from the Third Helix of the Islet-1 Homeodomain. Comparison with the Penetratin Peptide. Bioconjugate Chemistry, 2001, 12, 911-916.	3.6	51
299	Intrathecal administration of PNA targeting galanin receptor reduces galanin-mediated inhibitory effect in the rat spinal cord. NeuroReport, 2001, 12, 317-320.	1.2	37
300	PNA oligomers as tools for specific modulation of gene expression. New Biotechnology, 2001, 17, 183-192.	2.7	70
301	Different domains in the third intracellular loop of the GLP-1 receptor are responsible for $\widehat{Gl}\pm s$ and $\widehat{Gl}\pm i/\widehat{Gl}\pm o$ activation. BBA - Proteins and Proteomics, 2001, 1546, 79-86.	2.1	75
302	p53 Latency. Journal of Biological Chemistry, 2001, 276, 15650-15658.	3.4	44
303	Cellular translocation of proteins by transportan. FASEB Journal, 2001, 15, 1451-1453.	0.5	163
304	Chimeric Mastoparans: Biological Probes and Designer Secretagogues., 2001,, 750-751.		0
305	Galanin receptor subtypes and ligand binding. Neuropeptides, 2000, 34, 331-337.	2.2	85
306	Cell-penetrating peptides. Trends in Pharmacological Sciences, 2000, 21, 99-103.	8.7	809

#	Article	IF	CITATIONS
307	Inhibition of the bovine papillomavirus E2 protein activity by peptide nucleic acid. Virus Research, 2000, 66, 39-50.	2.2	26
308	Deletion analogues of transportan. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1467, 165-176.	2.6	244
309	Translocation Properties of Novel Cell Penetrating Transportan and Penetratin Analogues. Bioconjugate Chemistry, 2000, 11, 619-626.	3.6	84
310	Regulation of GTPase and adenylate cyclase activity by amyloid \hat{l}^2 -peptide and its fragments in rat brain tissue. Brain Research, 1999, 850, 179-188.	2.2	23
311	Effects of vasopressin–mastoparan chimeric peptides on insulin release and G-protein activity. Regulatory Peptides, 1999, 82, 45-51.	1.9	16
312	Peptitergent PD1 affects the GTPase activity of rat brain cortical membranes. Peptides, 1999, 20, 177-184.	2.4	22
313	Co-localized neuropeptide Y and GABA have complementary presynaptic effects on sensory synaptic transmission. European Journal of Neuroscience, 1998, 10, 2856-2870.	2.6	38
314	Structural determinants for binding to CGRP receptors expressed by human SK-N-MC and Col 29 cells: studies with chimeric and other peptides. British Journal of Pharmacology, 1998, 124, 1659-1666.	5.4	34
315	Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nature Biotechnology, 1998, 16, 857-861.	17.5	570
316	Mutagenesis Study on Human Galanin Receptor GalR1 Reveals Domains Involved in Ligand Binding a. Annals of the New York Academy of Sciences, 1998, 863, 78-85.	3.8	12
317	Chemistry and Molecular Biology of Galanin Receptor Ligands a. Annals of the New York Academy of Sciences, 1998, 863, 86-93.	3.8	31
318	Galanin-Based Peptides, Galparan and Transportan, with Receptor-Dependent and Independent Activities. Annals of the New York Academy of Sciences, 1998, 863, 450-453.	3.8	21
319	Effects of Three Galanin Analogs on the Outward Current Evoked by Galanin in Locus Coeruleus a. Annals of the New York Academy of Sciences, 1998, 863, 459-465.	3.8	18
320	Biochemical mechanisms of calcium mobilisation induced by mastoparan and chimeric hormonewmastoparan constructs. Cell Calcium, 1998, 24, 27-34.	2.4	36
321	NMR Study of the Conformation and Localization of Porcine Galanin in SDS Micelles. Comparison with an Inactive Analog and a Galanin Receptor Antagonistâ€. Biochemistry, 1998, 37, 9169-9178.	2.5	31
322	Differential Regulation of GTPase Activity by Mastoparan and Galparan. Archives of Biochemistry and Biophysics, 1998, 349, 321-328.	3.0	17
323	Galanin Modulation of Seizures and Seizure Modulation of Hippocampal Galanin in Animal Models of Status Epilepticus. Journal of Neuroscience, 1998, 18, 10070-10077.	3.6	172
324	Cell penetration by transportan. FASEB Journal, 1998, 12, 67-77.	0.5	444

#	Article	IF	CITATIONS
325	Novel galanin receptor ligands. Chemical Biology and Drug Design, 1998, 51, 65-74.	1.1	29
326	Co-localized neuropeptide Y and GABA have complementary presynaptic effects on sensory synaptic transmission. European Journal of Neuroscience, 1998, 10, 2856-2870.	2.6	1
327	Calcium-mobilizing actions of chimeric hormone-mastoparan peptides. Biochemical Society Transactions, 1997, 25, 450S-450S.	3.4	4
328	Chimeric strategies for the rational design of bioactive analogs of small peptide hormones. FASEB Journal, 1997, 11, 582-591.	0.5	35
329	Mutagenesis and Ligand Modification Studies on Galanin Binding to its GTP-Binding-Protein-Coupled Receptor GalR1. FEBS Journal, 1997, 249, 601-606.	0.2	30
330	Galparan induces in vivo acetylcholine release in the frontal cortex. Brain Research, 1997, 756, 174-178.	2.2	6
331	A study of the interaction of some neuropeptides and their analogs with bilayer lipid membranes and liposomes. Bioelectrochemistry, 1997, 42, 123-132.	1.0	14
332	Lâ€Alaâ€substituted rat galanin analogs distinguish between hypothalamic and jejunal galanin receptor subtypes. Chemical Biology and Drug Design, 1997, 49, 195-200.	1.1	10
333	Attempt to Solubilize Na+/K+-Exchanging ATPase with Amphiphilic Peptide PD1 Acta Chemica Scandinavica, 1997, 51, 403-406.	0.7	11
334	A galanin-mastoparan chimeric peptide activates the Na+,K+-ATPase and reverses its inhibition by ouabain. Regulatory Peptides, 1996, 62, 47-52.	1.9	47
335	Ligand binding and functional effects of systematic double d-amino acid residue substituted neuropeptide Y analogs on Y1 and Y2 receptor types. Regulatory Peptides, 1996, 62, 131-136.	1.9	6
336	Pituitary adenylate cyclase activating polypeptide (PACAP) redistributes the blood within the pancreas of anesthetized rats. Regulatory Peptides, 1996, 63, 123-128.	1.9	22
337	A study of melittin, motilin and galanin in reversed micellar environments, using circular dichroism spectroscopy. Biophysical Chemistry, 1996, 59, 185-192.	2.8	15
338	Galaninâ€"A neuropeptide with inhibitory actions. Cellular and Molecular Neurobiology, 1995, 15, 653-673.	3.3	86
339	Synthesis of N-protected erythro-phenylalanylepoxides. Tetrahedron: Asymmetry, 1995, 6, 2245-2247.	1.8	21
340	Binding and agonist/antagonist actions of M35, galanin(1-13)-bradykinin(2-9) amide chimeric peptide, in Rin m 5F insulinoma cells. Regulatory Peptides, 1995, 59, 341-348.	1.9	41
341	New high affinity peptide antagonists to the spinal galanin receptor. British Journal of Pharmacology, 1995, 116, 2076-2080.	5.4	42
342	Solvent stabilized solution structures of galanin and galanin analogs, studied by circular dichroism spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1236, 259-265.	2.6	8

#	Article	IF	CITATIONS
343	Differential regulation of adenylate cyclase activity in rat ventral and dorsal hippocampus by rat galanin. Neuroscience Letters, 1995, 187, 75-78.	2.1	26
344	Comparison of the solution structures of the chimeric peptides galanin(1-12)-Ala-neuropeptide Y(25-36)amide and galanin(1-12)-Pro-neuropeptide Y(25-36)amide. FEBS Journal, 1994, 222, 573-581.	0.2	6
345	Functional effects and ligand binding of chimeric galaninâ€neuropeptide Y (NPY) peptides on NPY and galanin receptor types. British Journal of Pharmacology, 1994, 111, 1129-1134.	5.4	11
346	The structure of the rodent and porcine neuropeptide galanin and antagonists as determined by FTIR and CD spectroscopy. Canadian Journal of Chemistry, 1994, 72, 1495-1499.	1.1	7
347	Analogs of Galanin (116) Modified in Positions 13 as Ligands to Rat Hypothalamic Galanin Receptors Acta Chemica Scandinavica, 1994, 48, 434-438.	0.7	8
348	Galanin reduces release of endogeneous excitatory amino acids in the rat hippocampus. European Journal of Pharmacology, 1993, 245, 1-7.	2.6	145
349	Galanin receptors from human pituitary tumors assayed with human galanin as ligand. Brain Research, 1993, 625, 173-176.	2.2	32
350	Differential effects of the putative galanin receptor antagonists M15 and M35 on striatal acetylcholine release. European Journal of Pharmacology, 1993, 242, 59-64.	3.5	43
351	Blockade of galanin-induced inhibition of insulin secretion from isolated mouse islets by the non-methionine containing antagonist M35. European Journal of Pharmacology, 1993, 232, 35-39.	3.5	27
352	Galanin message-associated peptide (GMAP)- and galanin-like immunoreactivities: Overlapping and differential distributions in the rat. Neuroscience Letters, 1992, 142, 139-142.	2.1	44
353	Galanin and galanin antagonists: molecular and biochemical perspectives. Trends in Pharmacological Sciences, 1992, 13, 312-317.	8.7	209
354	The novel high-affinity antagonist, galantide, blocks the galanin-mediated inhibition of glucose-induced insulin secretion. European Journal of Pharmacology, 1992, 210, 183-188.	3.5	86
355	Design of chimeric peptide ligands to galanin receptors and substance P receptors. International Journal of Peptide and Protein Research, 1992, 39, 516-522.	0.1	92
356	Isolation and characterization of galanin from sheep brain. Peptides, 1991, 12, 855-859.	2.4	35
357	Assay for Galanin Receptor. Methods in Neurosciences, 1991, , 225-234.	0.5	29
358	Galanin receptor and its ligands in the rat hippocampus. FEBS Journal, 1989, 181, 269-276.	0.2	103
359	The Internalization Mechanisms and Bioactivity of the Cell-Penetrating Peptides., 0,, 125-143.		3
360	Cell Penetrating Peptides-Hierarchical Porous Zeolitic Imidazolate Frameworks Nanoparticles: An Efficient Gene Delivery Platform. SSRN Electronic Journal, 0, , .	0.4	25