
Pierre-Louis Tharaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5297273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort. Science Translational Medicine, 2022, 14, eabj7521.	12.4	71
2	Severe COVID-19 is associated with hyperactivation of the alternative complement pathway. Journal of Allergy and Clinical Immunology, 2022, 149, 550-556.e2.	2.9	25
3	Behavioural immune landscapes of inflammation. Nature, 2022, 601, 415-421.	27.8	53
4	Sarilumab in adults hospitalised with moderate-to-severe COVID-19 pneumonia (CORIMUNO-SARI-1): An open-label randomised controlled trial. Lancet Rheumatology, The, 2022, 4, e24-e32.	3.9	34
5	Effect of interleukin-6 receptor antagonists in critically ill adult patients with COVID-19 pneumonia: two randomised controlled trials of the CORIMUNO-19 Collaborative Group. European Respiratory Journal, 2022, 60, 2102523.	6.7	31
6	FIBER-ML, an Open-Source Supervised Machine Learning Tool for Quantification of Fibrosis in Tissue Sections. American Journal of Pathology, 2022, 192, 783-793.	3.8	3
7	Tocilizumab plus dexamethasone versus dexamethasone in patients with moderate-to-severe COVID-19 pneumonia: A randomised clinical trial from the CORIMUNO-19 study group. EClinicalMedicine, 2022, 46, 101362.	7.1	20
8	The Amphiregulin/EGFR axis protects from lupus nephritis via downregulation of pathogenic CD4+ T helper cell responses. Journal of Autoimmunity, 2022, 129, 102829.	6.5	5
9	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	7.1	110
10	ScoMorphoFISH: A deep learning enabled toolbox for singleâ€cell singleâ€mRNA quantification and correlative (ultraâ€)morphometry. Journal of Cellular and Molecular Medicine, 2022, 26, 3513-3526.	3.6	6
11	Should we consider calcimimetics as a therapeutic option for nephrotic syndrome?. Kidney International, 2022, 101, 1110-1112.	5.2	1
12	Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia. JAMA Internal Medicine, 2021, 181, 32.	5.1	654
13	Cellâ€derived microparticles and sickle cell disease chronic vasculopathy in subâ€5aharan Africa: A multinational study. British Journal of Haematology, 2021, 192, 634-642.	2.5	6
14	Endothelial S1P ₁ Signaling Counteracts Infarct Expansion in Ischemic Stroke. Circulation Research, 2021, 128, 363-382.	4.5	71
15	3D-printed protected face shields for health care workers in Covid-19 pandemic. American Journal of Infection Control, 2021, 49, 389-391.	2.3	12
16	Nuclear receptors in podocyte biology and glomerular disease. Nature Reviews Nephrology, 2021, 17, 185-204.	9.6	36
17	Sunitinib-induced cardiac hypertrophy and the endothelin axis. Theranostics, 2021, 11, 3830-3838.	10.0	7
18	Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respiratory Medicine,the, 2021, 9, 295-304.	10.7	232

#	Article	IF	CITATIONS
19	Glomerular Endothelial Cell Crosstalk With Podocytes in Diabetic Kidney Disease. Frontiers in Medicine, 2021, 8, 659013.	2.6	28
20	Differential association between inflammatory cytokines and multiorgan dysfunction in COVID-19 patients with obesity. PLoS ONE, 2021, 16, e0252026.	2.5	12
21	FC 017DEEP-LEARNING ENABLED QUANTIFICATION OF SINGLE-CELL SINGLE-MRNA TRANSCRIPTS AND CORRELATIVE SUPER-RESOLVED PODOCYTE FOOT PROCESS MORPHOMETRY IN ROUTINE KIDNEY BIOPSY SPECIMEN. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
22	Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. Journal of Clinical Investigation, 2021, 131, .	8.2	34
23	Calpastatin prevents Angiotensin Il–mediated podocyte injury through maintenance of autophagy. Kidney International, 2021, 100, 90-106.	5.2	13
24	Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19. JAMA - Journal of the American Medical Association, 2021, 326, 499.	7.4	498
25	Parietal epithelial cell dysfunction in crescentic glomerulonephritis. Cell and Tissue Research, 2021, 385, 345-354.	2.9	11
26	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	11.9	357
27	PodoSighter: A Cloud-Based Tool for Label-Free Podocyte Detection in Kidney Whole-Slide Images. Journal of the American Society of Nephrology: JASN, 2021, 32, 2795-2813.	6.1	18
28	Effectiveness of Tocilizumab in Patients Hospitalized With COVID-19. JAMA Internal Medicine, 2021, 181, 1241.	5.1	111
29	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O	verlock 10) Tf 50 342 Ti 1,430
30	Podocytes maintain high basal levels of autophagy independent of mtor signaling. Autophagy, 2020, 16, 1932-1948.	9.1	69
31	Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science, 2020, 369, 718-724.	12.6	2,374
32	Podocyte healthy self-eating boosted by a spermidine meal?. Kidney International, 2020, 98, 1390-1392.	5.2	2
33	Deletion of the myeloid endothelin-B receptor confers long-term protection from angiotensin II-mediated kidney, eye and vessel injury. Kidney International, 2020, 98, 1193-1209.	5.2	8
34	P0717EPIGENETIC REGULATION OF CHRONIC KIDNEY DISEASE ACCELERATED-ATHEROSCLEROSIS. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
35	Metabolomic Profiling of Plasma and Erythrocytes in Sickle Mice Points to Altered Nociceptive Pathways. Cells, 2020, 9, 1334.	4.1	11
36	Amphiregulin Aggravates Glomerulonephritis via Recruitment and Activation of Myeloid Cells. Journal of the American Society of Nephrology: JASN, 2020, 31, 1996-2012.	6.1	14

#	Article	IF	CITATIONS
37	Histamine provides an original vista on cardiorenal syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5550-5552.	7.1	9
38	The proteome of neutrophils in sickle cell disease reveals an unexpected activation of interferon alpha signaling pathway. Haematologica, 2020, 105, 2851-2854.	3.5	21
39	Parietal epithelial cells role in repair versus scarring after glomerular injury. Current Opinion in Nephrology and Hypertension, 2020, 29, 293-301.	2.0	12
40	The tetraspanin CD9 controls migration and proliferation of parietal epithelial cells and glomerular disease progression. Nature Communications, 2019, 10, 3303.	12.8	52
41	The tetraspanin CD9Âcontrols invasive migration and proliferation of parietal epithelial cells and glomerular disease progression. Nephrologie Et Therapeutique, 2019, 15, 274.	0.5	0
42	Cellular regeneration of podocytes from parietal cells: the debate is still open. Kidney International, 2019, 96, 542-544.	5.2	11
43	Posttranslational modifications of sickle hemoglobin in microparticles may promoteÂinjury. Kidney International, 2019, 95, 1289-1291.	5.2	3
44	201. TETRASPANIN CD9 EXPRESSION IN PARIETAL EPITHELIAL CELLS DRIVES GLOMERULAR INJURY DURING CRESCENTIC RAPIDLY PROGRESSIVE GLOMERULONEPHRITIS. Rheumatology, 2019, 58, .	1.9	0
45	Local miscommunications between glomerular cells as potential therapeutic targets for crescentic glomerulonephritides. Nephrologie Et Therapeutique, 2019, 15, S1-S5.	0.5	0
46	Murine platelet production is suppressed by S1P release in the hematopoietic niche, not facilitated by blood S1P sensing. Blood Advances, 2019, 3, 1702-1713.	5.2	14
47	Resolution of sickle cell disease–associated inflammation and tissue damage with 17R-resolvin D1. Blood, 2019, 133, 252-265.	1.4	50
48	A novel role for myeloid endothelin-B receptors in hypertension. European Heart Journal, 2019, 40, 768-784.	2.2	31
49	Immunofluorescence Staining of WT-1/Podocalyxin on Mouse Kidney Sections. Bio-protocol, 2019, 9, e3210.	0.4	0
50	Studying the Determinant of Sickle Cell Disease Vasculopathy in Sub-Saharan Africa : The Biocadre Study. Blood, 2019, 134, 2310-2310.	1.4	0
51	CELL-Derived Microparticles and Sickle CELL Disease Chronic Vasculopathy in Sub-Saharan Africa. Blood, 2019, 134, 3568-3568.	1.4	0
52	Selective EGF-Receptor Inhibition inÂCD4+ÂTÂCells Induces Anergy andÂLimitsÂAtherosclerosis. Journal of the American College of Cardiology, 2018, 71, 160-172.	2.8	54
53	Selective EGFR (Epidermal Growth Factor Receptor) Deletion in Myeloid Cells Limits Atherosclerosis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 114-119.	2.4	29
54	Proteomic Landscape of Neutrophils in Sickle Cell Anemia: An Unexpected Autoimmune Profile. Blood, 2018, 132, 2357-2357.	1.4	6

#	Article	IF	CITATIONS
55	Imatinib Protects Against Hypoxia/Reoxygenation Induced Lung and Kidney Injury in a Humanized Mouse Model for SCD. Blood, 2018, 132, 725-725.	1.4	1
56	Targeting mTOR Signaling Can Prevent the Progression of FSGS. Journal of the American Society of Nephrology: JASN, 2017, 28, 2144-2157.	6.1	57
57	The endothelin B receptor plays a crucial role in the adhesion of neutrophils to the endothelium in sickle cell disease. Haematologica, 2017, 102, 1161-1172.	3.5	33
58	Sildenafil Prevents Podocyte Injury via PPAR-γ–Mediated TRPC6 Inhibition. Journal of the American Society of Nephrology: JASN, 2017, 28, 1491-1505.	6.1	54
59	Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. Journal of Biological Chemistry, 2017, 292, 732-747.	3.4	74
60	Endothelial Epas1 Deficiency Is Sufficient To Promote Parietal Epithelial Cell Activation and FSGS in Experimental Hypertension. Journal of the American Society of Nephrology: JASN, 2017, 28, 3563-3578.	6.1	20
61	Endothelium-Neutrophil Communication via B1-Kinin Receptor–Bearing Microvesicles in Vasculitis. Journal of the American Society of Nephrology: JASN, 2017, 28, 2255-2258.	6.1	3
62	Genetic and pharmacological inhibition of microRNA-92a maintains podocyte cell cycle quiescence and limits crescentic glomerulonephritis. Nature Communications, 2017, 8, 1829.	12.8	50
63	Inhibition of Bromodomain and Extraterminal Domain Family Proteins Ameliorates Experimental Renal Damage. Journal of the American Society of Nephrology: JASN, 2017, 28, 504-519.	6.1	56
64	ENDOTHELIAL AUTOPHAGY AS A KEY MECHANISM IN ARTERIAL DISEASES. Artery Research, 2017, 20, 45.	0.6	0
65	Hmox1Deficiency Sensitizes Mice to Peroxynitrite Formation and Diabetic Glomerular Microvascular Injuries. Journal of Diabetes Research, 2017, 2017, 1-7.	2.3	5
66	Cardiac Metabolic Deregulation Induced by the Tyrosine Kinase Receptor Inhibitor Sunitinib is rescued by Endothelin Receptor Antagonism. Theranostics, 2017, 7, 2757-2774.	10.0	27
67	Abstract 457: Selective Epidermal Growth Factor Receptor Inhibition in Cd4+ T Cells Induces Anergy and Limits Atherosclerosis Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, .	2.4	0
68	SP088ENDOTHELIAL HYPOXIA-INDUCIBLE FACTOR 2 Î [°] LPHA MEDIATES ENDOTHELIAL DYSFUNCTION AND GLOMERULAR LESIONS DURING HYPERTENSIVE NEPHROPATHY. Nephrology Dialysis Transplantation, 2016, 31, i114-i115.	0.7	0
69	Efficient second-harmonic imaging of collagen in histological slides using Bessel beam excitation. Scientific Reports, 2016, 6, 29863.	3.3	22
70	Endothelin-1 Induces Proteinuria by Heparanase-Mediated Disruption of the Glomerular Glycocalyx. Journal of the American Society of Nephrology: JASN, 2016, 27, 3545-3551.	6.1	93
71	Platelet and Erythrocyte Sources of S1P Are Redundant for Vascular Development and Homeostasis, but Both Rendered Essential After Plasma S1P Depletion in Anaphylactic Shock. Circulation Research, 2016, 119, e110-26.	4.5	61
72	French Intensive Care Society, International congress – Réanimation 2016. Annals of Intensive Care, 2016, 6, 1-236.	4.6	35

#	Article	IF	CITATIONS
73	Autophagy in kidney disease and aging: lessons from rodent models. Kidney International, 2016, 90, 950-964.	5.2	114
74	Nuclear Factor Erythroid 2-Related Factor 2 Drives Podocyte-Specific Expression of Peroxisome Proliferator-Activated Receptor γ Essential for Resistance to Crescentic GN. Journal of the American Society of Nephrology: JASN, 2016, 27, 172-188.	6.1	38
75	A Novel Extrinsic Pathway for the Unfolded Protein Response in the Kidney. Journal of the American Society of Nephrology: JASN, 2016, 27, 2670-2683.	6.1	26
76	How Is Proteinuric Diabetic Nephropathy Caused by Disturbed Proteostasis and Autophagy in Podocytes?. Diabetes, 2016, 65, 539-541.	0.6	11
77	Delayed Healing of Sickle Cell Ulcers Is due to Impaired Angiogenesis and CXCL12 Secretion in Skin Wounds. Journal of Investigative Dermatology, 2016, 136, 497-506.	0.7	21
78	Angiogenin Mediates Cell-Autonomous Translational Control under Endoplasmic Reticulum Stress and Attenuates Kidney Injury. Journal of the American Society of Nephrology: JASN, 2016, 27, 863-876.	6.1	36
79	The Endothelin Receptor Etb Plays a Crucial Role for Recruitment of Neutrophils to the Vascular Wall in Sickle Cell Disease. Blood, 2016, 128, 857-857.	1.4	0
80	Podocyte-Specific Deletion of Murine CXADR Does Not Impair Podocyte Development, Function or Stress Response. PLoS ONE, 2015, 10, e0129424.	2.5	7
81	Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy, 2015, 11, 1130-1145.	9.1	224
82	Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood, 2015, 125, 3805-3814.	1.4	217
83	ROS Detection and Quantification with Lanthanide-Based Nanosensors. Biophysical Journal, 2015, 108, 483a.	0.5	2
84	Lutheran/basal cell adhesion molecule accelerates progression of crescentic glomerulonephritis in mice. Kidney International, 2014, 85, 1123-1136.	5.2	11
85	Direct Action of Endothelin-1 on Podocytes Promotes Diabetic Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2014, 25, 1050-1062.	6.1	87
86	Early renal damage in patients with sickle cell disease in sub-Saharan Africa: a multinational, prospective, cross-sectional study. Lancet Haematology,the, 2014, 1, e64-e73.	4.6	57
87	Multifunctional Rare-Earth Vanadate Nanoparticles: Luminescent Labels, Oxidant Sensors, and MRI Contrast Agents. ACS Nano, 2014, 8, 11126-11137.	14.6	116
88	Genetic Background–Dependent Thrombotic Microangiopathy Is Related to Vascular Endothelial Growth Factor Receptor 2 Signaling during Anti-Glomerular Basement Membrane Glomerulonephritis in Mice. American Journal of Pathology, 2014, 184, 2438-2449.	3.8	10
89	Update on crescentic glomerulonephritis. Seminars in Immunopathology, 2014, 36, 479-490.	6.1	29
90	Regulation of the ROS Response Dynamics and Organization to PDGF Motile Stimuli Revealed by Single Nanoparticle Imaging. Chemistry and Biology, 2014, 21, 647-656.	6.0	13

#	Article	IF	CITATIONS
91	L22. Crescent formation: Unraveling local mediators that break glomerular epithelial cell tolerance to immune injury. Presse Medicale, 2013, 42, 565-568.	1.9	0
92	Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression. Journal of Clinical Investigation, 2013, 123, 4242-4254.	8.2	84
93	Sickle Cell Disease Glomerulopathy In Five Subsaharian African Countries: Results Of The Cadre Study. Blood, 2013, 122, 779-779.	1.4	2
94	Targeting signaling pathways in glomerular diseases. Current Opinion in Nephrology and Hypertension, 2012, 21, 417-427.	2.0	13
95	Epidermal growth factor: a new therapeutic target in glomerular disease. Nephrology Dialysis Transplantation, 2012, 27, 1297-1304.	0.7	36
96	Endothelin and the podocyte. CKJ: Clinical Kidney Journal, 2012, 5, 17-27.	2.9	37
97	Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease. Blood, 2012, 120, 5050-5058.	1.4	101
98	Red Blood Cell Sickling During Oxygen Cycles in a Microdroplet Device. Biophysical Journal, 2012, 102, 29a.	0.5	0
99	How Many Ways Can a Podocyte Die?. Seminars in Nephrology, 2012, 32, 394-404.	1.6	88
100	Analysis of Uncoupling Protein 2-Deficient Mice upon Anaesthesia and Sedation Revealed a Role for UCP2 in Locomotion. PLoS ONE, 2012, 7, e41846.	2.5	5
101	Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nature Medicine, 2011, 17, 1242-1250.	30.7	204
102	Red Blood Cell Sickling in Microdroplet Arrays. Biophysical Journal, 2011, 100, 471a.	0.5	0
103	Endothelin in Renal Injury due to Sickle Cell Disease. Contributions To Nephrology, 2011, 172, 185-199.	1.1	14
104	Endothelin and Podocyte Injury in Chronic Kidney Disease. Contributions To Nephrology, 2011, 172, 120-138.	1.1	31
105	A Role for Angiotensin II Type 1 Receptors on Bone Marrow-Derived Cells in the Pathogenesis of Angiotensin II–Dependent Hypertension. Hypertension, 2010, 55, 99-108.	2.7	81
106	Response to Angiotensin II Type 1a–Deficient Bone Marrow–Derived Dendritic Cells Produce Higher Levels of Monocyte Chemoattractant Protein 1. Hypertension, 2010, 56, .	2.7	0
107	Glomerular Hyperfiltration in Adult Sickle Cell Anemia. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 756-761.	4.5	130
108	Extracellular matrix alterations in hypertensive vascular remodeling. Journal of Molecular and Cellular Cardiology, 2010, 48, 433-439.	1.9	154

#	Article	IF	CITATIONS
109	Sickling of red blood cells through rapid oxygen exchange in microfluidic drops. Lab on A Chip, 2010, 10, 2505.	6.0	48
110	TGF- \hat{l}^2 activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II $\hat{a} \in \hat{l}$ infused mice. Journal of Clinical Investigation, 2010, 120, 422-432.	8.2	352
111	Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells. Nature Nanotechnology, 2009, 4, 581-585.	31.5	90
112	Intracellular detection of Reactive Oxygen Species using single lanthanide nanoparticle imaging: application to vascular signaling. Biophysical Journal, 2009, 96, 684a.	0.5	0
113	Measurement of the quadratic hyperpolarizability of the collagen triple helix and application to second harmonic imaging of natural and biomimetic collagenous tissues. Proceedings of SPIE, 2009, , .	0.8	0
114	Ultrasound Imaging of Renal Vaso-Occlusive Events in Transgenic Sickle Mice Exposed to Hypoxic Stress. Ultrasound in Medicine and Biology, 2008, 34, 1076-1084.	1.5	26
115	Efficacy of the endothelin receptor blocker bosentan for refractory sickle cell leg ulcers. British Journal of Haematology, 2008, 142, 991-992.	2.5	18
116	Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling. Journal of Biomedical Optics, 2008, 13, 054041.	2.6	68
117	Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. American Journal of Physiology - Renal Physiology, 2008, 295, F515-F524.	2.7	129
118	Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease. Journal of Clinical Investigation, 2008, 118, 1924-1933.	8.2	118
119	Transglutaminase-dependent RhoA Activation and Depletion by Serotonin in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2007, 282, 2918-2928.	3.4	106
120	Nonlinear microscopy of collagen fibers. , 2007, , .		0
121	Second harmonic imaging and scoring of collagen in fibrotic tissues. Optics Express, 2007, 15, 4054.	3.4	268
122	Variation in natriuretic peptides and mitral flow indexes during successful ventilatory weaning: aÂpreliminary study. Intensive Care Medicine, 2007, 33, 1183-1186.	8.2	35
123	Transforming Growth Factor-α Mediates Nuclear Factor κB Activation in Strained Arteries. Circulation Research, 2006, 99, 434-441.	4.5	54
124	Heparin binding EGF is necessary for vasospastic response to endothelin. FASEB Journal, 2006, 20, 1936-1938.	0.5	60
125	The Dual Endothelin Receptor Antagonist Bosentan Prevents the Acute Sickle Cell-Related Hypoxic Lung and Kidney Injury in Transgenic SAD Mice Blood, 2006, 108, 687-687.	1.4	4
126	EGF receptor activated by HB-EGF is required to calcium influx and vasoconstriction induced by endothelin-1. Journal of Hypertension, 2005, 23, A9.	0.5	8

#	Article	IF	CITATIONS
127	UCP-2 does not modulate angiotensin II-induced high blood pressure but limits the development of hypertensive renal sclerosis. Journal of Hypertension, 2005, 23, A11.	0.5	0
128	Urinary endothelin-1 as a marker of renal damage in sickle cell disease. Nephrology Dialysis Transplantation, 2005, 20, 2408-2413.	0.7	50
129	Troponin T as a marker of differentiation revealed by proteomic analysis in renal arterioles. FASEB Journal, 2004, 18, 585-586.	0.5	27
130	Exploring type I angiotensin (AT ₁) receptor functions through gene targeting. Acta Physiologica Scandinavica, 2004, 181, 561-570.	2.2	49
131	Progression and regression in renal vascular and glomerular fibrosis. International Journal of Experimental Pathology, 2004, 85, 1-11.	1.3	38
132	Prevention of renal vascular and glomerular fibrosis by epidermal growth factor receptor inhibition. FASEB Journal, 2004, 18, 926-928.	0.5	100
133	Epidermal growth factor receptor transactivation mediates the tonic and fibrogenic effects of endothelin in the aortic wall of transgenic mice. FASEB Journal, 2003, 17, 327-329.	0.5	76
134	Rho Kinase Promotes Alloimmune Responses by Regulating the Proliferation and Structure of T Cells. Journal of Immunology, 2003, 171, 96-105.	0.8	75
135	Cutaneous microvascular blood flow and reactivity in patients with homozygous sickle cell anaemia. European Journal of Haematology, 2002, 68, 327-331.	2.2	17
136	Peptides vasoactifs et développement de la sclérose rénale : apports de la transgenèse. Société De Biologie Journal, 2002, 196, 275-280.	0.3	0
137	Renal and vascular effects of S21402, a dual inhibitor of angiotensin-converting enzyme and neutral endopeptidase, in healthy subjects with hypovolemia*. Clinical Pharmacology and Therapeutics, 2002, 71, 468-478.	4.7	5
138	Transgenic Mice as a Tool to Study the Renin-Angiotensin System. , 2001, 135, 72-91.		16
139	Regression of Renal Vascular Fibrosis by Endothelin Receptor Antagonism. Hypertension, 2001, 37, 490-496.	2.7	88
140	Angiotensin II Activates Collagen I Gene Through a Mechanism Involving the MAP/ER Kinase Pathway. Hypertension, 2000, 36, 330-336.	2.7	164
141	Mechanisms Mediating the Renal Profibrotic Actions of Vasoactive Peptides in Transgenic Mice. Journal of the American Society of Nephrology: JASN, 2000, 11, S124-S128.	6.1	11
142	Endothelin, renal diseases, and hypertension. Advances in Nephrology From the Necker Hospital, 2000, 30, 281-303.	0.2	3
143	Vascular Endothelin-1 Gene Expression and Synthesis and Effect on Renal Type I Collagen Synthesis and Nephroangiosclerosis During Nitric Oxide Synthase Inhibition in Rats. Circulation, 1999, 99, 2185-2191.	1.6	83
144	Angiotensin II Activates Collagen Type I Gene in the Renal Vasculature of Transgenic Mice During Inhibition of Nitric Oxide Synthesis. Circulation, 1999, 100, 1901-1908.	1.6	82

#	Article	IF	CITATIONS
145	Activation of renin synthesis is dependent on intact nitric oxide production. Kidney International, 1997, 51, 1780-1787.	5.2	37
146	Role of αv integrins in mesangial cell adhesion to vitronectin and von Willebrand factor. Kidney International, 1997, 51, 1900-1907.	5.2	12
147	Interest and limits of in vitro studies in renal vascular endocrinology. Cell Biology and Toxicology, 1996, 12, 271-274.	5.3	1
148	Plasma Atrial and Brain Natriuretic Peptides in Mitral Stenosis Treated by Valvulotomy. Clinical Science, 1994, 87, 671-677.	4.3	21
149	Tocilizumab Plus Dexamethasone in Patients with Moderate-to-Severe COVID-19 Pneumonia: a Randomized Clinical Trial of the CORIMUNO-19 Study Group. SSRN Electronic Journal, 0, , .	0.4	1