
Nathan J Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5296521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple climate change-driven tipping points for coastal systems. Scientific Reports, 2021, 11, 15560.	3.3	35
2	Evaluating social vulnerability indicators: criteria and their application to the Social Vulnerability Index. Natural Hazards, 2020, 100, 417-436.	3.4	143
3	Variations in community evacuation potential related to average return periods in probabilistic tsunami hazard analysis. International Journal of Disaster Risk Reduction, 2020, 50, 101871.	3.9	10
4	Influence of demand and capacity in transportation simulations of short-notice, distant-tsunami evacuations. Transportation Research Interdisciplinary Perspectives, 2020, 7, 100211.	2.7	7
5	Dynamic flood modeling essential to assess the coastal impacts of climate change. Scientific Reports, 2019, 9, 4309.	3.3	109
6	Population vulnerability to tsunami hazards informed by previous and projected disasters: a case study of American Samoa. Natural Hazards, 2019, 95, 505-528.	3.4	8
7	Pedestrian evacuation modeling to reduce vehicle use for distant tsunami evacuations in Hawaiʻi. International Journal of Disaster Risk Reduction, 2018, 28, 271-283.	3.9	32
8	Clusters of community exposure to coastal flooding hazards based on storm and sea level rise scenarios—implications for adaptation networks in the San Francisco Bay region. Regional Environmental Change, 2018, 18, 1343-1355.	2.9	14
9	Projected 21st Century Coastal Flooding in the Southern California Bight. Part 2: Tools for Assessing Climate Change-Driven Coastal Hazards and Socio-Economic Impacts. Journal of Marine Science and Engineering, 2018, 6, 76.	2.6	20
10	Projecting community changes in hazard exposure to support long-term risk reduction: A case study of tsunami hazards in the U.S. Pacific Northwest. International Journal of Disaster Risk Reduction, 2017, 22, 10-22.	3.9	30
11	Community disruptions and business costs for distant tsunami evacuations using maximum versus scenario-based zones. Natural Hazards, 2017, 86, 619-643.	3.4	3
12	Influence of road network and population demand assumptions in evacuation modeling for distant tsunamis. Natural Hazards, 2017, 85, 1665-1687.	3.4	16
13	HERA: A dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios. Computers and Geosciences, 2017, 109, 124-133.	4.2	13
14	Household evacuation characteristics in American Samoa during the 2009 Samoa Islands tsunami. Disasters, 2016, 40, 779-798.	2.2	19
15	Intra-community implications of implementing multiple tsunami-evacuation zones in Alameda, California. Natural Hazards, 2016, 84, 975-995.	3.4	3
16	Pedestrian flow-path modeling to support tsunami evacuation and disaster relief planning in the U.S. Pacific Northwest. International Journal of Disaster Risk Reduction, 2016, 18, 41-55.	3.9	47
17	Beat-the-wave evacuation mapping for tsunami hazards in Seaside, Oregon, USA. Natural Hazards, 2016, 80, 1031-1056.	3.4	30
18	Global change and conservation triage on National Wildlife Refuges. Ecology and Society, 2015, 20, .	2.3	7

NATHAN J WOOD

#	Article	IF	CITATIONS
19	Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA). Journal of Applied Volcanology, 2015, 4, .	2.0	10
20	Incorporating climate change and morphological uncertainty into coastal change hazard assessments. Natural Hazards, 2015, 75, 2081-2102.	3.4	10
21	Variations in population vulnerability to tectonic and landslide-related tsunami hazards in Alaska. Natural Hazards, 2015, 75, 1811-1831.	3.4	11
22	Sensitivity of tsunami evacuation modeling to direction and land cover assumptions. Applied Geography, 2015, 56, 154-163.	3.7	25
23	A protocol for coordinating post-tsunami field reconnaissance efforts in the USA. Natural Hazards, 2015, 75, 2153-2165.	3.4	7
24	Community clusters of tsunami vulnerability in the US Pacific Northwest. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5354-5359.	7.1	43
25	Variable population exposure and distributed travel speeds in least-cost tsunami evacuation modelling. Natural Hazards and Earth System Sciences, 2014, 14, 2975-2991.	3.6	50
26	Comparing population exposure to multiple Washington earthquake scenarios for prioritizing loss estimation studies. Applied Geography, 2014, 52, 191-203.	3.7	6
27	Reducing risk from lahar hazards: concepts, case studies, and roles for scientists. Journal of Applied Volcanology, 2014, 3, .	2.0	48
28	Changes in population evacuation potential for tsunami hazards in Seward, Alaska, since the 1964 Good Friday earthquake. Natural Hazards, 2014, 70, 1031-1053.	3.4	7
29	Tsunami vertical-evacuation planning in the U.S. Pacific Northwest as a geospatial, multi-criteria decision problem. International Journal of Disaster Risk Reduction, 2014, 9, 68-83.	3.9	53
30	A support system for assessing local vulnerability to weather and climate. Natural Hazards, 2013, 65, 999-1008.	3.4	23
31	Community variations in population exposure to near-field tsunami hazards as a function of pedestrian travel time to safety. Natural Hazards, 2013, 65, 1603-1628.	3.4	57
32	The Participatory Vulnerability Scoping Diagram: Deliberative Risk Ranking for Community Water Systems. Annals of the American Association of Geographers, 2013, 103, 343-352.	3.0	20
33	Anisotropic path modeling to assess pedestrian-evacuation potential from Cascadia-related tsunamis in the US Pacific Northwest. Natural Hazards, 2012, 62, 275-300.	3.4	88
34	Community variations in social vulnerability to Cascadia-related tsunamis in the U.S. Pacific Northwest. Natural Hazards, 2010, 52, 369-389.	3.4	184
35	Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida. Applied Geography, 2010, 30, 490-505.	3.7	131
36	Stakeholder perspectives on land-use strategies for adapting to climate-change-enhanced coastal hazards: Sarasota, Florida. Applied Geography, 2010, 30, 506-517.	3.7	76

NATHAN J WOOD

#	Article	IF	CITATIONS
37	Variations in population exposure and sensitivity to lahar hazards from Mount Rainier, Washington. Journal of Volcanology and Geothermal Research, 2009, 188, 367-378.	2.1	21
38	Tsunami exposure estimation with land-cover data: Oregon and the Cascadia subduction zone. Applied Geography, 2009, 29, 158-170.	3.7	27
39	Current and Future Vulnerability of Sarasota County, Florida, to Hurricane Storm Surge and Sea Level Rise. , 2008, , .		2
40	Spatial Trends in Marsh Sediment Deposition Within a Microtidal Creek System, Waccasassa Bay, Florida. Journal of Coastal Research, 2007, 234, 823-833.	0.3	14
41	The influence of hazard models on GIS-based regional risk assessments and mitigation policies. International Journal of Risk Assessment and Management, 2006, 6, 369.	0.1	12
42	Vulnerability of Port and Harbor Communities to Earthquake and Tsunami Hazards: The Use of GIS in Community Hazard Planning. Coastal Management, 2004, 32, 243-269.	2.0	52
43	Reducing Vulnerability of Ports and Harbors to Earthquake and Tsunami Hazards. , 2002, , 949.		3
44	Vulnerability Assessment of a Port and Harbor Community to Earthquake and Tsunami Hazards: Integrating Technical Expert and Stakeholder Input. Natural Hazards Review, 2002, 3, 148-157.	1.5	23