Maria João Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5296100/publications.pdf

Version: 2024-02-01

65 papers 1,846 citations

304743 22 h-index 276875 41 g-index

70 all docs

70 docs citations

70 times ranked

2823 citing authors

#	Article	IF	CITATIONS
1	HBM4EU chromates study - Overall results and recommendations for the biomonitoring of occupational exposure to hexavalent chromium. Environmental Research, 2022, 204, 111984.	7.5	32
2	Investigation of the genotoxicity of digested titanium dioxide nanomaterials in human intestinal cells. Food and Chemical Toxicology, 2022, 161, 112841.	3.6	6
3	HBM4EU Chromates Study: Determinants of Exposure to Hexavalent Chromium in Plating, Welding and Other Occupational Settings. International Journal of Environmental Research and Public Health, 2022, 19, 3683.	2.6	13
4	HBM4EU Chromates Study: Urinary Metabolomics Study of Workers Exposed to Hexavalent Chromium. Metabolites, 2022, 12, 362.	2.9	5
5	Analysis of the In Vitro Toxicity of Nanocelluloses in Human Lung Cells as Compared to Multi-Walled Carbon Nanotubes. Nanomaterials, 2022, 12, 1432.	4.1	11
6	Genotoxicity of Three Micro/Nanocelluloses with Different Physicochemical Characteristics in MG-63 and V79 Cells. Journal of Xenobiotics, 2022, 12, 91-108.	6.7	4
7	Cellular and Molecular Mechanisms of Toxicity of Ingested Titanium Dioxide Nanomaterials. Advances in Experimental Medicine and Biology, 2022, 1357, 225-257.	1.6	3
8	Hazard Assessment of Benchmark Metal-Based Nanomaterials Through a Set of In Vitro Genotoxicity Assays. Advances in Experimental Medicine and Biology, 2022, 1357, 351-375.	1.6	1
9	Overview of Adverse Outcome Pathways and Current Applications on Nanomaterials. Advances in Experimental Medicine and Biology, 2022, 1357, 415-439.	1.6	2
10	New "Omics―Approaches as Tools to Explore Mechanistic Nanotoxicology. Advances in Experimental Medicine and Biology, 2022, 1357, 179-194.	1.6	3
11	HBM4EU chromates study - Usefulness of measurement of blood chromium levels in the assessment of occupational Cr(VI) exposure Environmental Research, 2022, 214, 113758.	7. 5	7
12	The hCOMET project: International database comparison of results with the comet assay in human biomonitoring. Baseline frequency of DNA damage and effect of main confounders. Mutation Research - Reviews in Mutation Research, 2021, 787, 108371.	5.5	45
13	HBM4EU chromates study - Reflection and lessons learnt from designing and undertaking a collaborative European biomonitoring study on occupational exposure to hexavalent chromium. International Journal of Hygiene and Environmental Health, 2021, 234, 113725.	4.3	17
14	Biomarkers of effect as determined in human biomonitoring studies on hexavalent chromium and cadmium in the period 2008–2020. Environmental Research, 2021, 197, 110998.	7.5	22
15	Environmental Tobacco Smoke in Occupational Settings: Effect and Susceptibility Biomarkers in Workers From Lisbon Restaurants and Bars. Frontiers in Public Health, 2021, 9, 674142.	2.7	2
16	A human biomonitoring (HBM) Global Registry Framework: Further advancement of HBM research following the FAIR principles. International Journal of Hygiene and Environmental Health, 2021, 238, 113826.	4.3	17
17	HBM4EU Occupational Biomonitoring Study on e-Waste—Study Protocol. International Journal of Environmental Research and Public Health, 2021, 18, 12987.	2.6	14
18	Combined cytotoxic and genotoxic effects of ochratoxin A and fumonisin B1 in human kidney and liver cell models. Toxicology in Vitro, 2020, 68, 104949.	2.4	16

#	Article	IF	CITATIONS
19	Analysis of the Characteristics and Cytotoxicity of Titanium Dioxide Nanomaterials Following Simulated In Vitro Digestion. Nanomaterials, 2020, 10, 1516.	4.1	21
20	On the toxicity of cellulose nanocrystals and nanofibrils in animal and cellular models. Cellulose, 2020, 27, 5509-5544.	4.9	70
21	Cytotoxicity and genotoxicity of MWCNT-7 and crocidolite: assessment in alveolar epithelial cells <i>versus</i> their coculture with monocyte-derived macrophages. Nanotoxicology, 2020, 14, 479-503.	3.0	22
22	Functional effects of differentially expressed microRNAs in A549 cells exposed to MWCNT-7 or crocidolite. Toxicology Letters, 2020, 328, 7-18.	0.8	6
23	Setting up a collaborative European human biological monitoring study on occupational exposure to hexavalent chromium. Environmental Research, 2019, 177, 108583.	7.5	53
24	In vitro exposure to the next-generation plasticizer diisononyl cyclohexane-1,2-dicarboxylate (DINCH): cytotoxicity and genotoxicity assessment in human cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2019, 82, 526-536.	2.3	21
25	Biological impact of metal nanomaterials in relation to their physicochemical characteristics. Toxicology in Vitro, 2019, 56, 172-183.	2.4	14
26	Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. International Journal of Hygiene and Environmental Health, 2019, 222, 727-737.	4.3	124
27	A multi-endpoint approach to the combined toxic effects of patulin and ochratoxin a in human intestinal cells. Toxicology Letters, 2019, 313, 120-129.	0.8	27
28	Conventional and novel "omicsâ€â€based approaches to the study of carbon nanotubes pulmonary toxicity. Environmental and Molecular Mutagenesis, 2018, 59, 334-362.	2.2	10
29	Evaluating the genotoxicity of cellulose nanofibrils in a co-culture of human lung epithelial cells and monocyte-derived macrophages. Toxicology Letters, 2018, 291, 173-183.	0.8	39
30	Toxicity screening of a novel poly(methylmethacrylate)-Eudragit nanocarrier on L929 fibroblasts. Toxicology Letters, 2017, 276, 129-137.	0.8	13
31	High throughput toxicity screening and intracellular detection of nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1413.	6.1	101
32	Fibrous shape underlies the mutagenic and carcinogenic potential of nanosilver while surface chemistry affects the biosafety of iron oxide nanoparticles. Mutagenesis, 2017, 32, 193-202.	2.6	19
33	Environmental risk assessment in a contaminated estuary: An integrated weight of evidence approach as a decision support tool. Ocean and Coastal Management, 2017, 143, 51-62.	4.4	9
34	Hazard assessment of benchmark metallic nanomaterials in alveolar epithelial cells. Toxicology Letters, 2017, 280, S186.	0.8	0
35	Stimulation of RAC1/PAK1 signalling upregulates DNA damage repair genes via the BCL6/STAT5-switch. Annals of Oncology, 2017, 28, v19-v20.	1.2	0
36	Evaluation of the cytotoxic and genotoxic effects of benchmark multi-walled carbon nanotubes in relation to their physicochemical properties. Toxicology Letters, 2016, 262, 123-134.	0.8	40

#	Article	IF	CITATIONS
37	Challenges in risk assessment of multiple mycotoxins in food. World Mycotoxin Journal, 2016, 9, 791-811.	1.4	57
38	Towards a nanospecific approach for risk assessment. Regulatory Toxicology and Pharmacology, 2016, 80, 46-59.	2.7	109
39	Ochratoxin A-induced cytotoxicity, genotoxicity and reactive oxygen species in kidney cells: An integrative approach of complementary endpoints. Food and Chemical Toxicology, 2016, 87, 65-76.	3.6	88
40	A contribution to hazard assessment of combined exposure to mycotoxins using in vitro toxicity testing. Toxicology Letters, 2015, 238, S352-S353.	0.8	1
41	Genotoxicity of synthetic amorphous silica nanoparticles in rats following shortâ€ŧerm exposure. Part 1: Oral route. Environmental and Molecular Mutagenesis, 2015, 56, 218-227.	2.2	43
42	Role of Nanogenotoxicology Studies in Safety Evaluation of Nanomaterials., 2015,, 263-287.		3
43	Exploring the Potential Interference of Estuarine Sediment Contaminants with the DNA Repair Capacity of Human Hepatoma Cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 559-570.	2.3	10
44	Genotoxicity of Microcystin-LR in <i>In Vitro</i> li>and <i>In Vivo</i> Experimental Models. BioMed Research International, 2014, 2014, 1-9.	1.9	25
45	An integrative assessment to determine the genotoxic hazard of estuarine sediments: combining cell and whole-organism responses. Frontiers in Genetics, 2014, 5, 437.	2.3	10
46	Integrated approach to the in vivo genotoxic effects of a titanium dioxide nanomaterial using <i>LacZ</i> plasmidâ€based transgenic mice. Environmental and Molecular Mutagenesis, 2014, 55, 500-509.	2.2	22
47	Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicology in Vitro, 2014, 28, 60-69.	2.4	106
48	Human hepatoma cells exposed to estuarine sediment contaminant extracts permitted the differentiation between cytotoxic and pro-mutagenic fractions. Environmental Pollution, 2014, 185, 141-148.	7. 5	12
49	The LacZ Plasmid-Based Transgenic Mouse Model: An Integrative Approach to Study the Genotoxicity of Nanomaterials. Methods in Pharmacology and Toxicology, 2014, , 451-477.	0.2	0
50	Chlorinated Polycyclic Aromatic Hydrocarbons Associated with Drinking Water Disinfection: Synthesis, Formation under Aqueous Chlorination Conditions and Genotoxic Effects. Polycyclic Aromatic Compounds, 2014, 34, 356-371.	2.6	19
51	Determining oxidative and non-oxidative genotoxic effects driven by estuarine sediment contaminants on a human hepatoma cell line. Science of the Total Environment, 2014, 478, 25-35.	8.0	21
52	Human exposure to indoor radon: a survey in the region of Guarda, Portugal. Radiation Protection Dosimetry, 2013, 154, 237-244.	0.8	6
53	Multi-mycotoxin determination in baby foods and in vitro combined cytotoxic effects of aflatoxin M1 and ochratoxin A. World Mycotoxin Journal, 2013, 6, 375-388.	1.4	19
54	Poly (ADPâ€ribose) polymeraseâ€1 deficiency does not affect ethylnitrosourea mutagenicity in liver and testis of <i>lacZ</i> transgenic mice. Environmental and Molecular Mutagenesis, 2010, 51, 322-329.	2,2	3

#	Article	IF	CITATIONS
55	Microcystin-LR activates the ERK1/2 kinases and stimulates the proliferation of the monkey kidney-derived cell line Vero-E6. Toxicology in Vitro, 2010, 24, 1689-1695.	2.4	44
56	Comparative study of the cytotoxic effect of microcistin-LR and purified extracts from Microcystis aeruginosa on a kidney cell line. Toxicon, 2009, 53, 487-495.	1.6	44
57	Morphological and ultrastructural effects of microcystin-LR from Microcystis aeruginosa extract on a kidney cell line. Toxicon, 2009, 54, 283-294.	1.6	66
58	Mutagenic effects of poly (ADP-ribose) polymerase-1 deficiency in transgenic mice. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 640, 82-88.	1.0	6
59	Comparative analysis of the mutagenic activity of oxaliplatin and cisplatin in theHprt gene of CHO cells. Environmental and Molecular Mutagenesis, 2005, 46, 104-115.	2.2	50
60	Intra- and inter-laboratory variation in the scoring of micronuclei and nucleoplasmic bridges in binucleated human lymphocytes. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 534, 45-64.	1.7	159
61	Mutagenic activity of cisplatin in thelacZ plasmid-based transgenic mouse model. Environmental and Molecular Mutagenesis, 2002, 40, 283-291.	2.2	21
62	Low frequency noise and whole-body vibration cause increased levels of sister chromatid exchange in splenocytes of exposed mice. Teratogenesis, Carcinogenesis, and Mutagenesis, 2002, 22, 195-203.	0.8	20
63	Increased levels of sister chromatid exchanges in military aircraft pilots. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 1999, 441, 129-134.	1.7	16
64	Sister chromatid exchange analysis in workers exposed to noise and vibration. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1996, 369, 113-121.	1.2	6
65	Dose dependence of radiation-induced micronuclei in cytokinesis-blocked human lymphocytes. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1994, 322, 117-128.	1.2	30