Simon W Hayward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5295904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. Journal of Cell Biology, 2017, 216, 3799-3816.	2.3	402
2	NTP ERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2008, 83, 157-395.	1.4	381
3	Role of the stromal microenvironment in carcinogenesis of the prostate. International Journal of Cancer, 2003, 107, 1-10.	2.3	346
4	Cancer associated fibroblasts in cancer pathogenesis. Seminars in Cell and Developmental Biology, 2010, 21, 33-39.	2.3	323
5	Cell differentiation lineage in the prostate. Differentiation, 2001, 68, 270-279.	1.0	270
6	Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. Journal of Steroid Biochemistry and Molecular Biology, 2004, 92, 221-236.	1.2	266
7	Regeneration of Bladder Urothelium, Smooth Muscle, Blood Vessels and Nerves Into an Acellular Tissue Matrix. Journal of Urology, 1996, 156, 571-577.	0.2	256
8	Cross-talk between Paracrine-Acting Cytokine and Chemokine Pathways Promotes Malignancy in Benign Human Prostatic Epithelium. Cancer Research, 2007, 67, 4244-4253.	0.4	255
9	Role of stroma in carcinogenesis of the prostate. Differentiation, 2002, 70, 473-485.	1.0	253
10	Loss of TGF-Î ² type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene, 2005, 24, 5053-5068.	2.6	252
11	Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Research, 2002, 62, 2999-3004.	0.4	207
12	Interactions between adult human prostatic epithelium and rat urogenital sinus mesenchyme in a tissue recombination model. Differentiation, 1998, 63, 131-140.	1.0	173
13	Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate, 2005, 64, 149-159.	1.2	162
14	Altered TGF-β Signaling in a Subpopulation of Human Stromal Cells Promotes Prostatic Carcinogenesis. Cancer Research, 2011, 71, 1272-1281.	0.4	158
15	Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial cell maturation. Development (Cambridge), 2005, 132, 3431-3443.	1.2	157
16	THE PROSTATE: DEVELOPMENT AND PHYSIOLOGY. Radiologic Clinics of North America, 2000, 38, 1-14.	0.9	151
17	Identification of SFRP1 as a Candidate Mediator of Stromal-to-Epithelial Signaling in Prostate Cancer. Cancer Research, 2005, 65, 10423-10430.	0.4	150
18	Role of Mesenchymal-Epithelial Interactions in Normal Bladder Development. Journal of Urology, 1996, 156, 1820-1827.	0.2	142

#	Article	IF	CITATIONS
19	Transforming Growth Factor-β Promotes Invasion in Tumorigenic but not in Nontumorigenic Human Prostatic Epithelial Cells. Cancer Research, 2006, 66, 8007-8016.	0.4	111
20	Review of Prostate Anatomy and Embryology and the Etiology of Benign Prostatic Hyperplasia. Urologic Clinics of North America, 2016, 43, 279-288.	0.8	111
21	Normal Development and Carcinogenesis of the Prostate Annals of the New York Academy of Sciences, 1996, 784, 50-62.	1.8	110
22	An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Laboratory Investigation, 2005, 85, 1392-1404.	1.7	107
23	NE-10 Neuroendocrine Cancer Promotes the LNCaP Xenograft Growth in Castrated Mice. Cancer Research, 2004, 64, 5489-5495.	0.4	105
24	Stromal Transforming Growth Factor-Î ² Signaling Mediates Prostatic Response to Androgen Ablation by Paracrine Wnt Activity. Cancer Research, 2008, 68, 4709-4718.	0.4	104
25	Directed differentiation of embryonic stem cells into bladder tissue. Developmental Biology, 2007, 304, 556-566.	0.9	93
26	Growth Factors in Bladder Wound Healing. Journal of Urology, 1997, 157, 2388-2395.	0.2	89
27	Expression profiling of a human cell line model of prostatic cancer reveals a direct involvement of interferon signaling in prostate tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2830-2835.	3.3	83
28	Steroid hormones stimulate human prostate cancer progression and metastasis. International Journal of Cancer, 2006, 118, 2123-2131.	2.3	81
29	Role for Stromal Heterogeneity in Prostate Tumorigenesis. Cancer Research, 2011, 71, 3459-3470.	0.4	80
30	The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian Journal of Urology, 2020, 7, 191-202.	0.5	78
31	ll-6 signaling between ductal carcinoma in situ cells and carcinoma-associated fibroblasts mediates tumor cell growth and migration. BMC Cancer, 2015, 15, 584.	1.1	76
32	The Effect of Testosterone on Androgen Receptors and Human Penile Growth. Journal of Urology, 1997, 158, 1113-1118.	0.2	75
33	Estrogenic effects on prostatic differentiation and carcinogenesis. Reproduction, Fertility and Development, 2001, 13, 285.	0.1	74
34	Molecular, cellular and developmental biology of urothelium as a basis of bladder regeneration. Differentiation, 2005, 73, 121-133.	1.0	74
35	A Novel Model of Urinary Tract Differentiation, Tissue Regeneration, and Disease: Reprogramming Human Prostate and Bladder Cells into Induced Pluripotent Stem Cells. European Urology, 2013, 64, 753-761.	0.9	73
36	Stretching Fibroblasts Remodels Fibronectin and Alters Cancer Cell Migration. Scientific Reports, 2015, 5, 8334.	1.6	72

#	Article	IF	CITATIONS
37	Androgen hormone action in prostatic carcinogenesis: stromal androgen receptors mediate prostate cancer progression, malignant transformation and metastasis. Carcinogenesis, 2012, 33, 1391-1398.	1.3	69
38	ALCAM/CD166 Is a TGF-β–Responsive Marker and Functional Regulator of Prostate Cancer Metastasis to Bone. Cancer Research, 2014, 74, 1404-1415.	0.4	69
39	Functional Remodeling of Benign Human Prostatic Tissues <i>In Vivo</i> by Spontaneously Immortalized Progenitor and Intermediate Cells. Stem Cells, 2010, 28, 344-356.	1.4	68
40	Stromal Androgen Receptor in Prostate Development and Cancer. American Journal of Pathology, 2014, 184, 2598-2607.	1.9	65
41	Unopposed c-MYC expression in benign prostatic epithelium causes a cancer phenotype. Prostate, 2005, 63, 369-384.	1.2	64
42	Directed Differentiation of Bone Marrow Derived Mesenchymal Stem Cells Into Bladder Urothelium. Journal of Urology, 2008, 180, 1778-1783.	0.2	64
43	MESENCHYMAL-EPITHELIAL INTERACTIONS IN BLADDER SMOOTH MUSCLE DEVELOPMENT: EPITHELIAL SPECIFICITY. Journal of Urology, 1998, 160, 1040-1046.	0.2	63
44	Loss of TGF-β Responsiveness in Prostate Stromal Cells Alters Chemokine Levels and Facilitates the Development of Mixed Osteoblastic/Osteolytic Bone Lesions. Molecular Cancer Research, 2012, 10, 494-503.	1.5	62
45	Tumor-secreted Hsp90 Subverts Polycomb Function to Drive Prostate Tumor Growth and Invasion. Journal of Biological Chemistry, 2015, 290, 8271-8282.	1.6	62
46	The Role of Transforming Growth Factor-β–Mediated Tumor-Stroma Interactions in Prostate Cancer Progression: An Integrative Approach. Cancer Research, 2009, 69, 7111-7120.	0.4	61
47	Evidence that the prostate-specific antigen (PSA)/Zn2+ axis may play a role in human prostate cancer cell invasion. Cancer Letters, 2004, 207, 79-87.	3.2	59
48	Tissue-Specific Consequences of Cyclin D1 Overexpression in Prostate Cancer Progression. Cancer Research, 2007, 67, 8188-8197.	0.4	59
49	The rat prostatic epithelial cell line NRP-152 can differentiate in vivo in response to its stromal environment. , 1999, 39, 205-212.		55
50	Nkx3.1 and Myc crossregulate shared target genes in mouse and human prostate tumorigenesis. Journal of Clinical Investigation, 2012, 122, 1907-1919.	3.9	53
51	Heterogeneity of human prostate carcinomaâ€associated fibroblasts implicates a role for subpopulations in myeloid cell recruitment. Prostate, 2020, 80, 173-185.	1.2	51
52	NFâ€̂₽B and androgen receptor variant expression correlate with human BPH progression. Prostate, 2016, 76, 491-511.	1.2	49
53	An edgewise look at basal epithelial cells: Three-dimensional views of the rat prostate, mammary gland and salivary gland. Differentiation, 1996, 60, 219-227.	1.0	48
54	Quantitation of apoptotic activity following castration in human prostatic tissue in vivo. Prostate, 2003, 54, 212-219.	1.2	47

#	Article	IF	CITATIONS
55	Targeting the Tumor Stroma as a Novel Therapeutic Approach for Prostate Cancer. Advances in Pharmacology, 2012, 65, 267-313.	1.2	46
56	Development of a threeâ€dimensional culture model of prostatic epithelial cells and its use for the study of epithelialâ€mesenchymal transition and inhibition of PI3K pathway in prostate cancer. Prostate, 2009, 69, 428-442.	1.2	45
57	Hypertension Is a Major Contributor to 20-Hydroxyeicosatetraenoic Acid–Mediated Kidney Injury in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 597-610.	3.0	44
58	Plasticity of the urothelial phenotype: Effects of gastro-intestinal mesenchyme/stroma and implications for urinary tract reconstruction. Differentiation, 2000, 66, 126-135.	1.0	43
59	Recruitment of CD34+ Fibroblasts in Tumor-Associated Reactive Stroma. American Journal of Pathology, 2014, 184, 1860-1870.	1.9	43
60	PPARÎ ³ : A molecular link between systemic metabolic disease and benign prostate hyperplasia. Differentiation, 2011, 82, 220-236.	1.0	41
61	Expression of pleiotrophin in the prostate is androgen regulated and it functions as an autocrine regulator of mesenchyme and cancer associated fibroblasts and as a paracrine regulator of epithelia. Prostate, 2011, 71, 305-317.	1.2	41
62	E2f binding-deficient <i>Rb1</i> protein suppresses prostate tumor progression in vivo. Proceedings of the United States of America, 2011, 108, 704-709.	3.3	41
63	The Effect of Testosterone on Androgen Receptors and Human Penile Growth. Journal of Urology, 1997, 158, 1113-1118.	0.2	40
64	Endodermal Origin of Bladder Trigone Inferred From Mesenchymal-Epithelial Interaction. Journal of Urology, 2010, 183, 386-391.	0.2	39
65	FOXA1 deletion in luminal epithelium causes prostatic hyperplasia and alteration of differentiated phenotype. Laboratory Investigation, 2014, 94, 726-739.	1.7	39
66	MESENCHYMAL-EPITHELIAL INTERACTIONS IN BLADDER SMOOTH MUSCLE DEVELOPMENT: EFFECTS OF THE LOCAL TISSUE ENVIRONMENT. Journal of Urology, 2001, 165, 1283-1288.	0.2	38
67	The Stress Response Mediator ATF3 Represses Androgen Signaling by Binding the Androgen Receptor. Molecular and Cellular Biology, 2012, 32, 3190-3202.	1.1	38
68	Down-regulation of p57Kip2 Induces Prostate Cancer in the Mouse. Cancer Research, 2008, 68, 3601-3608.	0.4	37
69	A Role for Polyploidy in the Tumorigenicity of Pim-1-Expressing Human Prostate and Mammary Epithelial Cells. PLoS ONE, 2008, 3, e2572.	1.1	37
70	Urothelial transdifferentiation to prostate epithelia is mediated by paracrine TGF-Î ² signaling. Differentiation, 2009, 77, 95-102.	1.0	37
71	Surgical intervention for symptomatic benign prostatic hyperplasia is correlated with expression of the APâ€l transcription factor network. Prostate, 2014, 74, 669-679.	1.2	37
72	Transcriptional profiling of inductive mesenchyme to identify molecules involved in prostate development and disease. Genome Biology, 2007, 8, R213.	13.9	36

#	Article	IF	CITATIONS
73	TGF-β1 Induces an Age-Dependent Inflammation of Nerve Ganglia and Fibroplasia in the Prostate Gland Stroma of a Novel Transgenic Mouse. PLoS ONE, 2010, 5, e13751.	1.1	36
74	DGAT1 Inhibitor Suppresses Prostate Tumor Growth and Migration by Regulating Intracellular Lipids and Non-Centrosomal MTOC Protein GM130. Scientific Reports, 2019, 9, 3035.	1.6	35
75	An E2F Binding-Deficient Rb1 Protein Partially Rescues Developmental Defects Associated with Rb1 Nullizygosity. Molecular and Cellular Biology, 2006, 26, 1527-1537.	1.1	34
76	Methodologies in Assaying Prostate Cancer Stem Cells. Methods in Molecular Biology, 2009, 568, 85-138.	0.4	34
77	Cells Comprising the Prostate Cancer Microenvironment Lack Recurrent Clonal Somatic Genomic Aberrations. Molecular Cancer Research, 2016, 14, 374-384.	1.5	34
78	Critical and Distinct Roles of p16 and Telomerase in Regulating the Proliferative Life Span of Normal Human Prostate Epithelial Progenitor Cells. Journal of Biological Chemistry, 2008, 283, 27957-27972.	1.6	32
79	Bladder Stromal Loss of Transforming Growth Factor Receptor II Decreases Fibrosis After Bladder Obstruction. Journal of Urology, 2009, 182, 1775-1780.	0.2	32
80	SPARCL1 suppresses metastasis in prostate cancer. Molecular Oncology, 2013, 7, 1019-1030.	2.1	32
81	Expression of hepatocyte nuclear factor-3α in rat prostate, seminal vesicle, and bladder. , 1998, 211, 131-140.		30
82	UNDERSTANDING BLADDER REGENERATION: SMOOTH MUSCLE ONTOGENY. Journal of Urology, 1999, 162, 1101-1105.	0.2	30
83	Genome-wide analysis of AR binding and comparison with transcript expression in primary human fetal prostate fibroblasts and cancer associated fibroblasts. Molecular and Cellular Endocrinology, 2018, 471, 1-14.	1.6	30
84	Stromal reactivity differentially drives tumour cell evolution and prostate cancer progression. Nature Ecology and Evolution, 2020, 4, 870-884.	3.4	30
85	Rescue of Embryonic Epithelium Reveals That the Homozygous Deletion of the Retinoblastoma Gene Confers Growth Factor Independence and Immortality but Does Not Influence Epithelial Differentiation or Tissue Morphogenesis. Journal of Biological Chemistry, 2002, 277, 44475-44484.	1.6	29
86	Cathepsin D acts as an essential mediator to promote malignancy of benign prostatic epithelium. Prostate, 2013, 73, 476-488.	1.2	29
87	Deconstructing tumor heterogeneity: the stromal perspective. Oncotarget, 2020, 11, 3621-3632.	0.8	29
88	DIFFUSABLE GROWTH FACTORS INDUCE BLADDER SMOOTH MUSCLE DIFFERENTIATION. In Vitro Cellular and Developmental Biology - Animal, 2000, 36, 476.	0.7	28
89	Temporal-Spatial Protein Expression in Bladder Tissue Derived From Embryonic Stem Cells. Journal of Urology, 2008, 180, 1784-1789.	0.2	28
90	Approaches to understanding the importance and clinical implications of peroxisome proliferator-activated receptor gamma (PPAR?) signaling in prostate cancer. Journal of Cellular Biochemistry, 2004, 91, 513-527.	1.2	27

#	Article	IF	CITATIONS
91	Nfib Regulates Transcriptional Networks That Control the Development of Prostatic Hyperplasia. Endocrinology, 2016, 157, 1094-1109.	1.4	27
92	Disruption of Rb/E2F Pathway Results in Increased Cyclooxygenase-2 Expression and Activity in Prostate Epithelial Cells. Cancer Research, 2005, 65, 3633-3642.	0.4	26
93	MESENCHYMAL-EPITHELIAL INTERACTIONS IN BLADDER SMOOTH MUSCLE DEVELOPMENT. Journal of Urology, 1998, 160, 1040-1046.	0.2	26
94	Approaches to Modeling Stromal-Epithelial Interactions. Journal of Urology, 2002, 168, 1165-1172.	0.2	25
95	Androgen Regulated Genes in Human Prostate Xenografts in Mice: Relation to BPH and Prostate Cancer. PLoS ONE, 2009, 4, e8384.	1.1	25
96	Pathomimetic avatars reveal divergent roles of microenvironment in invasive transition of ductal carcinoma in situ. Breast Cancer Research, 2017, 19, 56.	2.2	24
97	Propagation of human prostate tissue from induced pluripotent stem cells. Stem Cells Translational Medicine, 2020, 9, 734-745.	1.6	24
98	Use of tissue recombination to predict phenotypes of transgenic mouse models of prostate carcinoma. Laboratory Investigation, 2005, 85, 1086-1103.	1.7	22
99	Bladder tissue formation from cultured bladder urothelium. Developmental Dynamics, 2006, 235, 2795-2801.	0.8	22
100	Deficiency in Metabolic Regulators PPAR ^{ĵ3} and PTEN Cooperates to Drive Keratinizing Squamous Metaplasia in Novel Models of Human Tissue Regeneration. American Journal of Pathology, 2013, 182, 449-459.	1.9	22
101	NFâ€ÎºB and androgen receptor variant 7 induce expression of SRD5A isoforms and confer 5ARI resistance. Prostate, 2016, 76, 1004-1018.	1.2	22
102	TNF is a potential therapeutic target to suppress prostatic inflammation and hyperplasia in autoimmune disease. Nature Communications, 2022, 13, 2133.	5.8	22
103	Species-Specific Detection of Growth Factor Gene Expression in Developing Murine Prostatic Tissue1. Biology of Reproduction, 1998, 59, 93-99.	1.2	21
104	Modulation of the Hypoxic Response Following Partial Bladder Outlet Obstruction. Journal of Urology, 2012, 188, 1549-1554.	0.2	21
105	Interaction of prostate carcinoma-associated fibroblasts with human epithelial cell lines in vivo. Differentiation, 2017, 96, 40-48.	1.0	21
106	PEDF regulates plasticity of a novel lipid-MTOC axis in prostate cancer associated fibroblasts. Journal of Cell Science, 2018, 131, .	1.2	21
107	The Effects of interferons on the Activity of α -Glycerolphosphate Dehydrogenase in Benign Prostatic Hyperplasia Cells in Primary Culture. Journal of Urology, 1987, 138, 648-653.	0.2	20
108	Autophagy in nuclear receptor PPARγ-deficient mouse prostatic carcinogenesis. Autophagy, 2010, 6, 175-176.	4.3	20

#	Article	IF	CITATIONS
109	Reduction of pro-tumorigenic activity of human prostate cancer-associated fibroblasts using Dlk1 or SCUBE1. DMM Disease Models and Mechanisms, 2013, 6, 530-6.	1.2	20
110	A genetic variant near <i>GATA3</i> implicated in inherited susceptibility and etiology of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Prostate, 2017, 77, 1213-1220.	1.2	19
111	The Role of Type IV Collagenases in Rat Bladder Development and Obstruction. Pediatric Research, 1997, 41, 430-434.	1.1	19
112	Lipid droplet velocity is a microenvironmental sensor of aggressive tumors regulated by V-ATPase and PEDF. Laboratory Investigation, 2019, 99, 1822-1834.	1.7	17
113	Isolation and analysis of discreet human prostate cellular populations. Differentiation, 2016, 91, 139-151.	1.0	16
114	A Comprehensive Approach Toward Novel Serum Biomarkers for Benign Prostatic Hyperplasia: The MPSA Consortium. Journal of Urology, 2008, 179, 1243-1256.	0.2	15
115	Glucocorticoids Suppress Renal Cell Carcinoma Progression by Enhancing Na,K-ATPase Beta-1 Subunit Expression. PLoS ONE, 2015, 10, e0122442.	1.1	15
116	Reduced Contractility and Motility of Prostatic Cancer-Associated Fibroblasts after Inhibition of Heat Shock Protein 90. Cancers, 2016, 8, 77.	1.7	15
117	Loss of ephrin B2 receptor (EPHB2) sets lipid rheostat by regulating proteins DGAT1 and ATGL inducing lipid droplet storage in prostate cancer cells. Laboratory Investigation, 2021, 101, 921-934.	1.7	15
118	A Preliminary Study of JM-27: A Serum Marker That Can Specifically Identify Men With Symptomatic Benign Prostatic Hyperplasia. Journal of Urology, 2007, 177, 610-614.	0.2	14
119	Race as a Contributor to Stromal Modulation of Tumor Progression. Cancers, 2021, 13, 2656.	1.7	14
120	Chronic Cyclic Bladder Over Distention Up-Regulates Hypoxia Dependent Pathways. Journal of Urology, 2013, 190, 1603-1609.	0.2	13
121	F 2 -Isoprostanes as a Biomarker of Oxidative Stress in the Mouse Bladder. Journal of Urology, 2014, 191, 1597-1601.	0.2	13
122	Androgen-dependent prostate epithelial cell selection by targeting ARR2PBneo to the LPB-Tag model of prostate cancer. Laboratory Investigation, 2006, 86, 1074-1088.	1.7	12
123	Hyperglycemia and T Cell infiltration are associated with stromal and epithelial prostatic hyperplasia in the nonobese diabetic mouse. Prostate, 2019, 79, 980-993.	1.2	12
124	Altered TGFâ€Î±/β signaling drives cooperation between breast cancer cell populations. FASEB Journal, 2016, 30, 3441-3452.	0.2	11
125	Epithelial-Mesenchymal Interactions in the Bladder. Advances in Experimental Medicine and Biology, 1999, 462, 49-61.	0.8	11
126	Androgen receptor differentially regulates the proliferation of prostatic epithelial cells <i>in vivo</i> . Oncotarget, 2016, 7, 70404-70419.	0.8	10

#	Article	IF	CITATIONS
127	Approaches to modeling stromal-epithelial interactions. Journal of Urology, 2002, 168, 1165-72.	0.2	10
128	Fibroblast heterogeneity in prostate carcinogenesis. Cancer Letters, 2022, 525, 76-83.	3.2	9
129	Spontaneous immortalization of human dermal microvascular endothelial cells. World Journal of Stem Cells, 2010, 2, 114.	1.3	8
130	Modeling stromal-epithelial interactions in disease progression. Discovery Medicine, 2010, 9, 504-11.	0.5	8
131	Immunotherapeutic Response in Tumors Is Affected by Microenvironmental ROS. Cancer Research, 2020, 80, 1799-1800.	0.4	7
132	Ephrin B Activate Src Family Kinases in Fibroblasts Inducing Stromal Remodeling in Prostate Cancer. Cancers, 2022, 14, 2336.	1.7	7
133	A simple method for freezing and storing viable tissue fragments. In Vitro Cellular and Developmental Biology - Animal, 1998, 34, 28-29.	0.7	5
134	Preclinical assessment of fibroblast activation protein as a target for antitumor therapy. Future Oncology, 2010, 6, 347-349.	1.1	5
135	Urothelial Inhibition of Transforming Growth Factor-β in a Bladder Tissue Recombination Model. Journal of Urology, 2007, 178, 1643-1649.	0.2	4
136	Monitoring Signal Transduction in Cancer. Journal of Histochemistry and Cytochemistry, 2001, 49, 1057-1058.	1.3	3
137	Rescue and Isolation of Rb-deficient Prostate Epithelium by Tissue Recombination. , 2003, 218, 17-34.		3
138	Contributions of carcinoma-associated fibroblasts to the prostate cancer microenvironment. Current Opinion in Endocrine and Metabolic Research, 2020, 10, 1-6.	0.6	2
139	Endocrinology of the Prostate. , 2010, , 2592-2609.		2
140	UNDERSTANDING BLADDER REGENERATION. Journal of Urology, 1999, , 1101-1105.	0.2	2
141	Investigating prostate cancer tumour-stroma interactions - clinical and biological insights from an evolutionary game. Nature Precedings, 2011, , .	0.1	1
142	Modeling Stromal–Epithelial Interactions. , 2012, , 417-442.		0
143	Prostate—Overview. , 2018, , 309-314.		0
144	Tyrosine kinase inhibitor therapy prescribed for nonâ€urologic diseases can modify PSA titers in urology patients. Prostate, 2019, 79, 259-264.	1.2	0

#	Article	IF	CITATIONS
145	Stromal Influences in Prostatic Carcinogenesis. , 2001, , 320-332.		0
146	Development and Differentiation of the Prostate Gland. , 2003, , 71-89.		0
147	Glandular Stem Cells (GSCs): Stem Cells in Glandular Organs. , 2013, , 223-233.		0
148	Cellular Signaling in the Bladder: Implications for Treatment. , 1999, , 387-391.		0