Scott E Watkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5295576/publications.pdf

Version: 2024-02-01

82 papers

7,701 citations

43 h-index 81 g-index

82 all docs 82 docs citations

times ranked

82

9849 citing authors

#	Article	IF	CITATIONS
1	Thieno[3,2- <i>b</i>]thiopheneâ^'Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices. Journal of the American Chemical Society, 2011, 133, 3272-3275.	6.6	854
2	Toward Large Scale Rollâ€ŧoâ€Roll Production of Fully Printed Perovskite Solar Cells. Advanced Materials, 2015, 27, 1241-1247.	11.1	785
3	Size-Dependent Valence and Conduction Band-Edge Energies of Semiconductor Nanocrystals. ACS Nano, 2011, 5, 5888-5902.	7.3	600
4	Indacenodithiophene Semiconducting Polymers for High-Performance, Air-Stable Transistors. Journal of the American Chemical Society, 2010, 132, 11437-11439.	6.6	529
5	Triplet Energy Back Transfer in Conjugated Polymers with Pendant Phosphorescent Iridium Complexes. Journal of the American Chemical Society, 2006, 128, 6647-6656.	6.6	226
6	Effect of Fluorination on the Properties of a Donor–Acceptor Copolymer for Use in Photovoltaic Cells and Transistors. Chemistry of Materials, 2013, 25, 277-285.	3.2	218
7	3D Printer Based Slotâ€Die Coater as a Labâ€toâ€Fab Translation Tool for Solutionâ€Processed Solar Cells. Advanced Energy Materials, 2015, 5, 1401539.	10.2	196
8	Systematic Improvement in Charge Carrier Mobility of Air Stable Triarylamine Copolymers. Journal of the American Chemical Society, 2009, 131, 10814-10815.	6.6	186
9	Tailored Donor–Acceptor Polymers with an A–D1–A–D2 Structure: Controlling Intermolecular Interactions to Enable Enhanced Polymer Photovoltaic Devices. Journal of the American Chemical Society, 2014, 136, 6049-6055.	6.6	186
10	Silaindacenodithiopheneâ€Based Low Band Gap Polymers – The Effect of Fluorine Substitution on Device Performances and Film Morphologies. Advanced Functional Materials, 2012, 22, 1663-1670.	7.8	177
11	Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly. Nano Letters, 2011, 11, 2856-2864.	4.5	169
12	Low band gap selenophene–diketopyrrolopyrrolepolymers exhibiting high and balanced ambipolar performance in bottom-gate transistors. Chemical Science, 2012, 3, 181-185.	3.7	169
13	Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment. Journal of Materials Chemistry, 2011, 21, 1721-1729.	6.7	145
14	Polyfluorenes without Monoalkylfluorene Defects. Journal of the American Chemical Society, 2007, 129, 11910-11911.	6.6	140
15	An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules. Solar Energy Materials and Solar Cells, 2011, 95, 1398-1416.	3.0	132
16	Layer-by-Layer Assembly of Sintered CdSe _{<i>x</i>} Te _{1–<i>x</i>} Nanocrystal Solar Cells. ACS Nano, 2012, 6, 5995-6004.	7.3	130
17	Silaindacenodithiophene Semiconducting Polymers for Efficient Solar Cells and High-Mobility Ambipolar Transistors. Chemistry of Materials, 2011, 23, 768-770.	3.2	126
18	Performance, morphology and photophysics of high open-circuit voltage, low band gap all-polymer solar cells. Energy and Environmental Science, 2015, 8, 332-342.	15.6	115

#	Article	IF	CITATIONS
19	Random benzotrithiophene-based donor–acceptor copolymers for efficient organic photovoltaic devices. Chemical Communications, 2012, 48, 5832.	2.2	111
20	Indan-1,3-dione electron-acceptor small molecules for solution-processable solar cells: a structure–property correlation. Chemical Communications, 2013, 49, 6307.	2.2	106
21	Organic photovoltaic modules fabricated by an industrial gravure printing proofer. Solar Energy Materials and Solar Cells, 2013, 109, 47-55.	3.0	103
22	Cu ₂ ZnSnS _{4<i>x</i>} Se _{4(1â€"<i>x</i>)} Solar Cells from Polar Nanocrystal Inks. Journal of the American Chemical Society, 2014, 136, 5237-5240.	6.6	102
23	A Hyperbranched Conjugated Polymer as the Cathode Interlayer for Highâ€Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 6889-6894.	11.1	101
24	Blue-to-green electrophosphorescence of iridium-based cyclometallated materials. Chemical Communications, 2005, , 4708.	2.2	98
25	Dibenzo[b,def]chrysene Derivatives: Solution-Processable Small Molecules that Deliver High Power-Conversion Efficiencies in Bulk Heterojunction Solar Cells. Chemistry of Materials, 2009, 21, 5701-5703.	3.2	98
26	A low band gap co-polymer of dithienogermole and 2,1,3-benzothiadiazole by Suzuki polycondensation and its application in transistor and photovoltaic cells. Journal of Materials Chemistry, 2011, 21, 16257.	6.7	91
27	Poly(9,9-dialkyl-3,6-dibenzosilole)—a high energy gap host for phosphorescent light emitting devices. Chemical Communications, 2005, , 5766.	2.2	88
28	Influence of the heteroatom on the optoelectronic properties and transistor performance of soluble thiophene-, selenophene- and tellurophene–vinylene copolymers. Chemical Science, 2016, 7, 1093-1099.	3.7	84
29	Thieno[3,2â€ <i>b</i> jthiopheneâ€diketopyrrolopyrrole Containing Polymers for Inverted Solar Cells Devices with High Short Circuit Currents. Advanced Functional Materials, 2013, 23, 5647-5654.	7.8	78
30	[6,6]â€Phenylâ€C ₆₁ â€Butyric Acid Dimethylamino Ester as a Cathode Buffer Layer for Highâ€Performance Polymer Solar Cells. Advanced Energy Materials, 2013, 3, 1569-1574.	10.2	77
31	Thiophene fluorination to enhance photovoltaic performance in low band gap donor–acceptor polymers. Chemical Communications, 2012, 48, 11130.	2.2	68
32	Absorption enhancement of oligothiophene dyes through the use of a cyanopyridone acceptor group in solution-processed organic solar cells. Chemical Communications, 2012, 48, 1889.	2.2	66
33	Influence of fluorine substituents on the film dielectric constant and open-circuit voltage in organic photovoltaics. Journal of Materials Chemistry C, 2014, 2, 3278-3284.	2.7	64
34	Synthesis of novel thieno[3,2-b]thienobis(silolothiophene) based low bandgap polymers for organic photovoltaics. Chemical Communications, 2012, 48, 7699.	2.2	63
35	Influence of the Electron Deficient Coâ€Monomer on the Optoelectronic Properties and Photovoltaic Performance of Dithienogermoleâ€based Coâ€Polymers. Advanced Functional Materials, 2014, 24, 678-687.	7.8	59
36	Benzotrithiophene Co-polymers with High Charge Carrier Mobilities in Field-Effect Transistors. Chemistry of Materials, 2011, 23, 4025-4031.	3.2	56

#	Article	IF	CITATIONS
37	Isostructural, Deeper Highest Occupied Molecular Orbital Analogues of Poly(3-hexylthiophene) for High-Open Circuit Voltage Organic Solar Cells. Chemistry of Materials, 2013, 25, 4239-4249.	3.2	55
38	Pyrroloindacenodithiophene containing polymers for organic field effect transistors and organic photovoltaics. Journal of Materials Chemistry, 2011, 21, 18744.	6.7	50
39	Synthesis, Characterization, and Field Effect Transistor Properties of Regioregular Poly(3-alkyl-2,5-selenylenevinylene). Macromolecules, 2011, 44, 5194-5199.	2.2	49
40	Synthesis, Photophysical, and Device Properties of Novel Dendrimers Based on a Fluoreneâ°'Hexabenzocoronene (FHBC) Core. Organic Letters, 2009, 11, 975-978.	2.4	46
41	The effect of direct amine substituted push–pull oligothiophene chromophores on dye-sensitized and bulk heterojunction solar cells performance. Tetrahedron, 2013, 69, 3584-3592.	1.0	46
42	A benzotrithiophene-based low band gap polymer for polymer solar cells with high open-circuit voltage. Journal of Materials Chemistry, 2011, 21, 17642.	6.7	44
43	Influence of moisture out-gassing from encapsulant materials on the lifetime of organic solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 485-491.	3.0	44
44	Influence of Fluorination and Molecular Weight on the Morphology and Performance of PTB7:PC ₇₁ 8M Solar Cells. Journal of Physical Chemistry C, 2014, 118, 9918-9929.	1.5	43
45	Effect of indium and tin contamination on the efficiency and electronic properties of organic bulk hetero-junction solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 3251-3255.	3.0	42
46	Synthesis and Characterization of Fused Pyrrolo[3,2- <i>d</i> :4,5- <i>d′</i>]bisthiazole-Containing Polymers. Organic Letters, 2010, 12, 5478-5481.	2.4	40
47	The tuning of the energy levels of dibenzosilole copolymers and applications in organic electronics. Journal of Materials Chemistry, 2011, 21, 11800.	6.7	39
48	Excited State Dynamics of Organo-Lanthanide Electroluminescent Phosphors:Â The Properties of Tb(tb-pmp)3and Gd(tb-pmp)3. Journal of Physical Chemistry A, 2002, 106, 4014-4021.	1.1	36
49	Efficiency enhancement for bulk heterojunction photovoltaic cells via incorporation of alcohol soluble conjugated polymer interlayer. Applied Physics Letters, 2012, 100, 203304.	1.5	36
50	Copper complexes with ferrocenyl pendants: Evidence for an Fell â ¹ /4 Cull ⇌ Felll â ¹ /4 Cul electron transfer equilibrium leading to a reaction with dioxygen. Dalton Transactions RSC, 2002, , 983-994.	2.3	35
51	Near Infrared Absorbing Soluble Poly(cyclopenta[2,1-b:3,4-b′]dithiophen-4-one)vinylene Polymers Exhibiting High Hole and Electron Mobilities in Ambient Air. Chemistry of Materials, 2013, 25, 59-68.	3.2	35
52	Development of a High-Performance Donor–Acceptor Conjugated Polymer: Synergy in Materials and Device Optimization. Chemistry of Materials, 2016, 28, 3481-3487.	3.2	35
53	Low band gap dithienogermolodithiophene copolymers with tunable acceptors and side-chains for organic solar cells. Journal of Materials Chemistry A, 2013, 1, 14973.	5.2	31
54	Benzotrithiophene Copolymers: Influence of Molecular Packing and Energy Levels on Charge Carrier Mobility. Macromolecules, 2014, 47, 2883-2890.	2.2	26

#	Article	IF	CITATIONS
55	Benzothiadiazole-Containing Pendant Polymers Prepared by RAFT and Their Electro-Optical Properties. Macromolecules, 2010, 43, 7101-7110.	2.2	25
56	<i>N</i> -Acyldithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyrrole-Based Low-Band-Gap Conjugated Polymer Solar Cells with Amine-Modified [6,6]-Phenyl-C61-butyric Acid Ester Cathode Interlayers. ACS Applied Materials & Diterlayers. ACS Ap	4.0	25
57	Band-gap tuning of pendant polymers for organic light-emitting devices and photovoltaic applications. Synthetic Metals, 2011, 161, 856-863.	2.1	24
58	Pyrroloindacenodithiophene polymers: the effect of molecular structure on OFET performance. Polymer Chemistry, 2013, 4, 3537.	1.9	23
59	Improved lifetimes of organic solar cells with solutionâ€processed molybdenum oxide anodeâ€modifying layers. Progress in Photovoltaics: Research and Applications, 2015, 23, 989-996.	4.4	22
60	Incorporation of benzocarborane into conjugated polymer systems: synthesis, characterisation and optoelectronic properties. Journal of Materials Chemistry C, 2014, 2, 232-239.	2.7	21
61	Small molecules containing rigidified thiophenes and a cyanopyridone acceptor unit for solution-processable bulk-heterojunction solar cells. Dyes and Pigments, 2015, 119, 122-132.	2.0	21
62	Effect of Annealing Temperature of ZnO on the Energy Level Alignment in Inverted Organic Photovoltaics (OPVs). Energy Technology, 2014, 2, 462-468.	1.8	20
63	Towards co-operative reactivity in conjoint classical-organometallic heterometallic complexes: the co-ordination chemistry of novel ligands with triphenylphosphine and bis(pyridylethyl)amine or triazacyclononane domains. Dalton Transactions RSC, 2002, , 2423.	2.3	19
64	Dihydropyrroloindoledione-based copolymers for organic electronics. Journal of Materials Chemistry C, 2013, 1, 2711.	2.7	19
65	Solution-processing of ultra-thin CdTe/ZnO nanocrystal solar cells. Thin Solid Films, 2014, 558, 365-373.	0.8	18
66	Aligned carbon nanotube webs as a replacement for indium tin oxide in organic solar cells. Thin Solid Films, 2013, 531, 525-529.	0.8	17
67	A palladium(II) complex of a new iminophosphine ligand derived from diethylenetriamine and 2-(diphenylphosphino)benzaldehyde. Inorganica Chimica Acta, 2000, 307, 134-138.	1.2	15
68	Rhenium(i) phenanthrolines bearing electron withdrawing CF3 substituents: synthesis, characterization and biological evaluation. RSC Advances, 2013, 3, 23963.	1.7	13
69	Synthesis and properties of pyrrolo[3,2-b]pyrrole-1,4-diones (isoDPP) derivatives. Journal of Materials Chemistry C, 2014, 2, 4276.	2.7	13
70	Increased performance of single walled carbon nanotube photovoltaic cells through the addition of dibenzo[b,def]chrysene derivative. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 235, 72-76.	2.0	10
71	Intraphase Microstructure–Understanding the Impact on Organic Solar Cell Performance. Advanced Functional Materials, 2013, 23, 5655-5662.	7.8	10
72	Semi-perfluoroalkyl polyfluorene with varying fluorine content: synthesis and photophysical properties. Polymer Chemistry, 2013, 4, 5291.	1.9	8

#	Article	IF	CITATIONS
73	Aggregation of a Dibenzo[<i>b</i> , <i>def</i>]chrysene Based Organic Photovoltaic Material in Solution. Journal of Physical Chemistry B, 2014, 118, 6839-6849.	1.2	8
74	A new route to (N)n-donor functionalised phosphines; novel homo- and hetero-nuclear complexes of a phosphino-substituted triazacyclononane ligand. Journal of the Chemical Society Dalton Transactions, 1999, , 1539-1540.	1.1	7
75	Synthesis and Processing of Organic Materials in Supercritical Carbon Dioxide. MRS Bulletin, 2009, 34, 108-115.	1.7	7
76	Alkyl side-chain branching point effects in thieno [3,4-c] pyrrole-4,6-dione copolymers. Journal of Organic Semiconductors, 2013, 1, 30-35.	1.2	7
77	Photo-spectroscopic properties of benzothiadiazole-containing pendant polymers for photovoltaic applications. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 220, 102-112.	2.0	5
78	Infrared Sensitizers in Titaniaâ€Based Dyeâ€Sensitized Solar Cells using a Dimethylferrocene Electrolyte. ChemSusChem, 2013, 6, 2056-2060.	3.6	5
79	Synthesis, structures and luminescent behaviour of tridentate salicylaldiminato-type borate complexes. Inorganica Chimica Acta, 2010, 363, 1173-1178.	1.2	4
80	Correlation of charge extraction properties and short circuit current in various organic binary and ternary blend photovoltaic devices. Applied Physics A: Materials Science and Processing, 2012, 108, 515-520.	1.1	4
81	Synthesis of host polymers and guests for electrophosphorescence. Macromolecular Research, 2007, 15, 129-133.	1.0	3
82	New Light Emitting Polymers and High Energy Hosts for Triplet Emission. Materials Research Society Symposia Proceedings, 2004, 846, DD7.7.1.	0.1	0